Benutzer: Gast  Login
Titel:

Improved error bound for multivariate Chebyshev polynomial interpolation

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Glau, K.; Mahlstedt, M.
Nicht-TUM Koautoren:
nein
Kooperation:
-
Abstract:
Chebyshev interpolation is a highly effective, intensively studied method and enjoys excellent numerical properties. The interpolation nodes are known beforehand, implementation is straightforward and the method is numerically stable. For efficiency, a sharp error bound is essential, in particular for high-dimensional applications. For tensorized Chebyshev interpolation, we present an error bound that improves existing results significantly.
Stichworte:
(Tensorized) Chebyshev Polynomials, Polynomial Interpolation, Error Bounds
Intellectual Contribution:
Discipline-based Research
Zeitschriftentitel:
International Journal of Computer Mathematics
Journal gelistet in FT50 Ranking:
nein
Jahr:
2019
Band / Volume:
96(11)
Seitenangaben Beitrag:
2302-2314
Sprache:
en
Volltext / DOI:
doi:10.1080/00207160.2019.1599364
WWW:
https://arxiv.org/abs/1611.08706
TUM Einrichtung:
Lehrstuhl für Finanzmathematik
Urteilsbesprechung:
0
Key publication:
Nein
Peer reviewed:
Ja
commissioned:
not commissioned
Technology:
Nein
Interdisziplinarität:
Nein
Leitbild:
;
Ethics und Sustainability:
Nein
 BibTeX
Versionen