Calcium homeostasis influences radiological fracture healing in postmenopausal women.
Document type:
Journal Article
Author(s):
Kolb, J P; Schilling, A F; Bischoff, J; Novo de Oliveira, A; Spiro, A; Hoffmann, M; Amling, M; Rueger, J M; Lehmann, W
Abstract:
Recent studies suggest that calcium and 25-[OH]-cholecalciferol represent substantial co-factors in fracture healing. However, there still seems to be no sustainable consensus regarding the influence on fracture healing patterns. In this study, the influence of calcium and vitamin D levels on fracture callus formation was prospectively analysed using pQCT scan.94 postmenopausal females with distal radius fractures and consecutive surgery were included. Calcium, 25-[OH]-cholecalciferol, parathyroid hormone and bone-specific alkaline phosphatase levels were obtained prior surgical treatment and after 6 weeks. A pQCT scan was performed on both sites. Bone mineral density and fracture callus area were determined after detecting the outer border contour at a threshold of 280 mg/ccm. Patients received daily supplements of 1000 mg calcium and 880 IU 25-[OH]-cholecalciferol.Mean 25-[OH]-cholecalciferol level was 19.61 ± 21.87 ng/ml, mean parathyroid hormone level was 52.6 ± 58.9 ng/l and mean Ca level was 2.23 ± 0.35 mmol/l. After 6 weeks of supplementation a significant increase of calcium (p < 0.001) and 25-[OH]-cholecalciferol (p < 0.001), and a significant decrease of parathyroid hormone (p < 0.001) levels were observed. Sixth week follow-up fracture callus area correlated significantly with postoperative normal range calcium levels on the fractured site (p = 0.006). Bone mineral density correlated with age (p < 0.001), but not with calcium and 25-[OH]-cholecalciferol levels after 6 weeks. All fractures presented timely adequate callus formation.Calcium and parathyroid hormone serum levels influence fracture callus area interpreted as fracture callus formation patterns. Calcium levels within physiological range accounted for highest fracture callus area. Therefore, a balanced calcium homeostasis is required for appropriate callus formation.