Neumann boundary conditions prescribing the total momentum flux at inflow boundaries of biomechanical problems are proposed in this study. This approach enables the simultaneous application of velocity/flowrate and pressure curves at inflow boundaries. As the basic numerical method, a residual-based variational multiscale (or stabilized) finite element method is presented. The focus of the numerical examples in this work is on respiratory flows with complete flow reversals. However, the proposed formulation is just as well suited for cardiovascular flow problems with partial retrograde flow. Instabilities which were reported for such problems in the literature are resolved by the present approach without requiring the additional consideration of a Lagrange multiplier technique. The suitability of the approach is demonstrated for two respiratory flow examples, a rather simple tube and complex tracheobronchial airways (up to the fourth generation, segmented from end-expiratory CT images). For the latter example, the boundary conditions are generated from mechanical ventilation data obtained from an intensive care unit patient suffering from acute lung injury. For the tube, analytical pressure profiles can be replicated, and for the tracheobronchial airways, a correct distribution of the prescribed total momentum flux at the inflow boundary into velocity and pressure part is observed.
«
Neumann boundary conditions prescribing the total momentum flux at inflow boundaries of biomechanical problems are proposed in this study. This approach enables the simultaneous application of velocity/flowrate and pressure curves at inflow boundaries. As the basic numerical method, a residual-based variational multiscale (or stabilized) finite element method is presented. The focus of the numerical examples in this work is on respiratory flows with complete flow reversals. However, the proposed...
»