A framework is proposed for constructing algebraic multigrid transfer operators suitable for nonsymmetric positive definite linear systems. This framework follows a Schur complement perspective as this is suitable for both symmetric and nonsymmetric systems. In particular, a connection between algebraic multigrid and approximate block factorizations is explored. This connection demonstrates that the convergence rate of a two-level model multigrid iteration is completely governed by how well the coarse discretization approximates a Schur complement operator. The new grid transfer algorithm is then based on computing a Schur complement but restricting the solution space of the corresponding grid transfers in a Galerkin-style so that a far less expensive approximation is obtained. The final algorithm corresponds to a Richardson-type iteration that is used to improve a simple initial prolongator or a simple initial restrictor. Numerical results are presented illustrating the performance of the resulting algebraic multigrid method on highly nonsymmetric systems.
«
A framework is proposed for constructing algebraic multigrid transfer operators suitable for nonsymmetric positive definite linear systems. This framework follows a Schur complement perspective as this is suitable for both symmetric and nonsymmetric systems. In particular, a connection between algebraic multigrid and approximate block factorizations is explored. This connection demonstrates that the convergence rate of a two-level model multigrid iteration is completely governed by how well the...
»