Benutzer: Gast  Login

Titel:

Sequence Modeling with Spectral Mean Flows

Dokumenttyp:
Konferenzbeitrag
Art des Konferenzbeitrags:
Textbeitrag / Aufsatz
Autor(en):
Kim, Jinwoo; Beier, Max; Bevanda, Petar; Kim, Nayun; Hong, Seunghoon
Abstract:
A key question in sequence modeling with neural networks is how to represent and learn highly nonlinear and probabilistic state dynamics. Operator theory views such dynamics as linear maps on Hilbert spaces containing mean embedding vectors of distributions, offering an appealing but currently overlooked perspective. We propose a new approach to sequence modeling based on an operator-theoretic view of a hidden Markov model (HMM). Instead of materializing stochastic recurrence, we embed the ful...     »
Stichworte:
sequence modeling, time series, hidden Markov models, mean embeddings, linear operators, maximum mean discrepancy, gradient flows, relAI
Dewey-Dezimalklassifikation:
000 Informatik, Wissen, Systeme
Kongress- / Buchtitel:
The Thirty-Ninth Annual Conference on Neural Information Processing Systems
Jahr:
2025
Seiten:
30
Sprache:
en
Volltext / DOI:
doi:10.48550/arxiv.2510.15366
 BibTeX