Benutzer: Gast  Login
Titel:

Improving information gain from optimization problems using artificial neural networks

Dokumenttyp:
Konferenzbeitrag
Art des Konferenzbeitrags:
Textbeitrag / Aufsatz
Autor(en):
Wedel, W. G.; Hanel, A.; Spliethoff, H.; Vandersickel, A.
Abstract:
Decisions in energy policy are influenced by the results from energy systems optimizations. Uncertainties regarding the input parameters of optimization problems, e.g. cost developments of technologies and resources in the future, may influence the optimization results in such a way, that an easy interpretation of results is not possible. The methodology presented herein aims to overcome the problem of uncertainties and to allow taking into account probability distributions (pd) for all inp...     »
Stichworte:
Optimization; Energy; Artificial Neural Networks; Design of Experiment; Uncertainty
Kongress- / Buchtitel:
THE 32ND INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS
Kongress / Zusatzinformationen:
ECOS 2019
Datum der Konferenz:
23.06.2019-28.06.2019
Jahr:
2019
Seiten:
12
Nachgewiesen in:
Scopus
Reviewed:
ja
Sprache:
en
TUM Einrichtung:
Lehrstuhl für Energiesysteme
 BibTeX