User: Guest  Login
Document type:
Zeitschriftenaufsatz
Author(s):
Mostafa Ahmed, Ibrahim Harbi, Ralph Kennel, Mohamed Abdelrahem
Title:
Predictive Fixed Switching Maximum Power Point Tracking Algorithm with Dual Adaptive Step-Size for PV Systems
Abstract:
Maximum power point tracking (MPPT) is an essential and primary objective in photovoltaic (PV) systems implementation. Thus, in this article, the predictive fixed switching MPPT technique is proposed for a two-stage PV system, where the system under consideration consists of a PV source, boost converter, and two-level inverter. The MPPT design is based on dual adaptive step-size realization to limit the duty cycle oscillations at a steady state. Furthermore, the PI controller is eliminated, which simplifies the MPPT implementation. The suggested tuning procedure of the duty cycle is compared with the conventional adaptive step-size perturb and observe (P&O) method. The inverter is controlled using an efficient finite-set model predictive control (FS-MPC) algorithm with reduced computation burden, where the optimal switching state vector is identified based on the polarity of the reference voltage in the α-β reference frame and without any need for sector determination. Furthermore, the cost function of the FS-MPC algorithm is modified to include the reduction of the switching frequency as a secondary objective for the inverter control. The overall control methodology is evaluated using experimental results at different operating conditions.
Journal title:
Electronics
Year:
2021
Year / month:
2021-12
Quarter:
4. Quartal
Month:
Dec
Journal issue:
Electronics 10, no. 24
Pages contribution:
p. 3109
Reviewed:
ja
Language:
en
Fulltext / DOI:
doi:https://doi.org/10.3390/electronics10243109
WWW:
https://doi.org/10.3390/electronics10243109
Publisher:
MDPI
Date of publication:
14.12.2021
Semester:
WS 21-22
TUM Institution:
Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik
 BibTeX