Benutzer: Gast  Login
Titel:

Intermittency for the stochastic heat equation with Lévy noise

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Chong, C. and Kévei, P.
Abstract:
We investigate the moment asymptotics of the solution to the stochastic heat equation driven by a (d + 1)-dimensional Lévy space–time white noise. Unlike the case of Gaussian noise, the solution typically has no finite moments of order 1 + 2/d or higher. Intermittency of order p, that is, the exponential growth of the pth moment as time tends to infinity, is established in dimension d = 1 for all values p ∈ (1, 3), and in higher dimensions for some p ∈ (1, 1 + 2/d). The proof relies on a new mom...     »
Stichworte:
comparison principle; intermittency; intermittency fronts; Lévy noise; moment Lyapunov exponents; stochastic heat equation; stochastic PDE
Dewey Dezimalklassifikation:
510 Mathematik
Zeitschriftentitel:
Annals of Probability
Jahr:
2019
Band / Volume:
47
Jahr / Monat:
2019-07
Quartal:
3. Quartal
Monat:
Jul
Heft / Issue:
4
Seitenangaben Beitrag:
1911-1948
Sprache:
en
Volltext / DOI:
doi:10.1214/18-AOP1297
Verlag / Institution:
Institute of Mathematical Statistics
Verlagsort:
Cleveland, Ohio, USA
Print-ISSN:
0091-1798
E-ISSN:
2168-894X
Status:
Erstveröffentlichung
Publikationsdatum:
05.07.2019
TUM Einrichtung:
Lehrstuhl für Mathematische Statistik
Format:
Text
 BibTeX