Benutzer: Gast  Login
Titel:

Decay of covariances, uniqueness of ergodic component and scaling limit for a class of ∇ϕ systems with non-convex potential

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Cotar, C. and Deuschel, J.-D.
Abstract:
We consider a gradient interface model on the lattice with interaction potential which is a non-convex perturbation of a convex potential. Using a technique which decouples the neighboring vertices into even and odd vertices, we show for a class of non-convex potentials: the uniqueness of ergodic component for ∇ϕ-Gibbs measures, the decay of covariances, the scaling limit and the strict convexity of the surface tension.
Stichworte:
Effective non-convex gradient interface models; Uniqueness of ergodic component; Decay of covariances; Scaling limit; Surface tension
Zeitschriftentitel:
Annales de l'Institut Henri Poincaré
Jahr:
2012
Band / Volume:
48
Heft / Issue:
3
Seitenangaben Beitrag:
819-853
Reviewed:
ja
Sprache:
en
Volltext / DOI:
doi:10.1214/11-AIHP437
Status:
Verlagsversion / published
TUM Einrichtung:
Lehrstuhl für Mathematische Statistik
Format:
Text
 BibTeX