In der vorliegenden Arbeit wurden Algorithmen des maschinellen Lernens entwickelt, die eine nicht-invasive, modalitätsübergreifende Vorhersage molekularer Subtypen des Pankreaskarzinoms aus präoperativen Bildgebungsdaten erlauben. Die Relevanz der molekularen Subtypen ist in ihrer klinischen sowie prognostischen Bedeutung begründet. Die verwendeten Algorithmen ermöglichen eine prätherapeutische Patientenstratifikation in definierte Risikogruppen mit unterschiedlichem progressionsfreien- und Gesamtüberleben sowie unterschiedlichem Ansprechen gegenüber den in der klinischen Routine zum Einsatz kommenden Standardchemotherapeutika.
«
In der vorliegenden Arbeit wurden Algorithmen des maschinellen Lernens entwickelt, die eine nicht-invasive, modalitätsübergreifende Vorhersage molekularer Subtypen des Pankreaskarzinoms aus präoperativen Bildgebungsdaten erlauben. Die Relevanz der molekularen Subtypen ist in ihrer klinischen sowie prognostischen Bedeutung begründet. Die verwendeten Algorithmen ermöglichen eine prätherapeutische Patientenstratifikation in definierte Risikogruppen mit unterschiedlichem progressionsfreien- und Gesa...
»