Eine aussagekräftige Ähnlichkeitsmessung von hochdimensionalen Daten ist ein komplexes Thema, insbesondere für physikalische Phänomene. Hier werden Deep-Learning-Methoden vorgestellt, um diese Herausforderungen für 2D- und 3D-Daten zu bewältigen, die aus der Simulation von transportbasierten partiellen Differentialgleichungen entstehen. Die vorgeschlagenen, auf Siamesischen neuronalen Netzwerken basierenden Metriken übertreffen etablierte, elementweise Metriken und lassen sich gut auf neue Datenbereiche verallgemeinern.
«
Eine aussagekräftige Ähnlichkeitsmessung von hochdimensionalen Daten ist ein komplexes Thema, insbesondere für physikalische Phänomene. Hier werden Deep-Learning-Methoden vorgestellt, um diese Herausforderungen für 2D- und 3D-Daten zu bewältigen, die aus der Simulation von transportbasierten partiellen Differentialgleichungen entstehen. Die vorgeschlagenen, auf Siamesischen neuronalen Netzwerken basierenden Metriken übertreffen etablierte, elementweise Metriken und lassen sich gut auf neue Daten...
»