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ABSTRACT

Transport-based physical phenomena described by partial differential equations are
commonly encountered across scientific and engineering disciplines, for example, in heat
conduction, the behavior of weather and climate, or the propagation of electromagnetic
waves. A fundamental ingredient for the computational simulation of such processes is
the similarity assessment of spatially varying physical quantities. Established similarity
metrics for discretized simulation fields perform comparisons via element-wise operations.
Due to their computational efficiency and a lack of better alternatives, such metrics
are commonly used, even though they are suboptimal, as connected spatial structures
or patterns in the data are not considered. This dissertation proposes two methods to
address these shortcomings by utilizing deep learning techniques to compute semantically
meaningful similarities that respect large-scale patterns.

The first part of this work targets the comparison of scalar data from two-dimensional
simulations: A fundamental methodology for the similarity assessment is established,
where two high-dimensional data points are embedded and compared in the latent space of
a Siamese neural network. The data to train this network stems from a controllable data
generation environment based on simulations of different partial differential equations.
Ground truth distances for simulation fields against a reference sample are determined via
the magnitude of a perturbation to the initial conditions of the simulation. Furthermore, a
correlation-based loss function is developed to utilize relative similarities during training.
The generalization capabilities of the resulting metric are evaluated in detail on an
extensive range of synthetic test data and three real-world data sets.

In addition to targeting vectorial data from volumetric simulations, the second part
of this dissertation also addresses several limitations of the first approach: The data
acquisition methods are formalized, and a similarity model based on entropy is derived.
It improves ground truth distances by adjusting them according to the decorrelation
speed of different physical processes, leading to more effective training with less refined
training data. Furthermore, a convolutional multiscale neural network architecture is
introduced, and the correlation loss function from the first work is analyzed. Once again,
the generalization abilities of the metric are demonstrated on various test sets, and its
invariance properties to rotation and scale operations are investigated.

To summarize, the proposed approaches improve upon established element-wise similarity
definitions and generalize well to new data. Nevertheless, the discussed results also
indicate that several aspects of the similarity assessment of simulation data remain an
open question for future research, e.g., explainability limitations.
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ZUSAMMENFASSUNG

Transportphänomene, die durch partielle Differentialgleichungen beschrieben werden,
sind in wissenschaftlichen und technischen Disziplinen weit verbreitet, zum Beispiel
bei der Wärmeleitung, dem Verhalten von Wetter und Klima oder der Ausbreitung
elektromagnetischer Wellen. Eine grundlegende Voraussetzung für die computergestützte
Simulation solcher Prozesse ist die Ähnlichkeitsbewertung räumlich variierender physikali-
scher Größen. Etablierte Ähnlichkeitsmetriken für diskretisierte Simulationsfelder führen
Vergleiche über elementweise Operationen durch. Aufgrund ihrer Berechnungseffizienz
und des Mangels an besseren Alternativen werden solche Metriken häufig verwendet,
obwohl sie suboptimal sind, da zusammenhängende räumliche Strukturen oder Muster in
den Daten nicht berücksichtigt werden. Diese Dissertation schlägt zwei Methoden vor,
um solche Mängel zu beheben, indem Deep Learning verwendet wird, um semantisch
sinnvolle Ähnlichkeiten zu berechnen, die großskalige Strukturen berücksichtigen.

Der erste Teil dieser Arbeit zielt auf den Vergleich von skalaren Daten aus zweidimensiona-
len Simulationen ab: Es wird eine grundlegende Methodik für die Ähnlichkeitsbewertung
etabliert, bei der zwei hochdimensionale Datenpunkte im latenten Raum eines Siamesi-
schen neuronalen Netzwerks eingebettet und verglichen werden. Die Daten zum Training
dieses Netzwerks stammen aus einer kontrollierbaren Datengenerierungsumgebung, die
auf Simulationen verschiedener partieller Differentialgleichungen basiert. Die Ground
Truth Distanzen für Simulationsfelder zu einer Referenzprobe werden über die Größe einer
Störung der Anfangsbedingungen der Simulation bestimmt. Darüber hinaus wird eine
korrelationsbasierte Verlustfunktion entwickelt, um relative Ähnlichkeiten während des
Trainings zu nutzen. Die Verallgemeinerungsfähigkeiten der resultierenden Metrik werden
im Detail an einer Vielzahl von synthetischen Testdaten und drei realen Datensätzen
evaluiert.

Zusätzlich zur Zielsetzung vektorieller Daten aus volumetrischen Simulationen werden im
zweiten Teil dieser Dissertation auch mehrere Einschränkungen des ersten Ansatzes ange-
gangen: Die Datenerfassungsmethoden werden formalisiert und ein Ähnlichkeitsmodell
basierend auf Entropie wird abgeleitet. Es verbessert Ground Truth Distanzen, indem es
sie entsprechend der Dekorrelationsgeschwindigkeit verschiedener physikalischer Prozesse
anpasst, was zu einem effektiveren Training mit weniger verfeinerten Daten führt. Darüber
hinaus wird eine multiskalige neuronale Netzwerkarchitektur vorgeschlagen und die korre-
lationsbasierte Verlustfunktion aus der ersten Arbeit wird analysiert. Erneut werden die
Verallgemeinerungsfähigkeiten der Metrik an verschiedenen Testdaten demonstriert, und
ihre Invarianzeigenschaften gegenüber Rotations- und Skalierungsoperationen werden
untersucht.
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Zusammenfassend verbessern die vorgeschlagenen Ansätze etablierte elementweise Ähn-
lichkeitsdefinitionen und lassen sich gut auf neue Daten verallgemeinern. Dennoch zeigen
die diskutierten Ergebnisse auch, dass mehrere Aspekte der Ähnlichkeitsbewertung
von Simulationsdaten eine offene Frage für zukünftige Forschung bleiben, zum Beispiel
Einschränkungen in Sachen Erklärbarkeit.
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1 Introduction

Making comparisons is a fundamental human trait that is constantly performed consciously

and subconsciously. For example, recognizing faces is based on comparing new to

familiar faces, spatial orientation relies on comparing landmarks, or unfamiliar situations

require constant adjustment between expectations and the environment. Comparisons

are similarly significant across disciplines in science and engineering to make relative

statements about data. This dissertation investigates comparisons of different data in

terms of their similarity. Mathematically, comparisons in terms of similarity are modeled

via metrics, i.e., distance functions that return a scalar distance value or similarity score,

given two potentially high-dimensional input data points. Higher distances or lower

similarity scores correspond to a lower degree of similarity between the inputs, and a

lower distance bound or an upper similarity bound correspond to identical inputs.

When the inputs to the metric are constructs with little complexity, like scalar values,

determining similarity can be as simple as a difference operation followed by an absolute

value. However, it is typically necessary for practical applications to assess the similarity

of substantially more complex high-dimensional data, like images or fields from physical

simulations. Such similarity comparisons are, for instance, used to determine how

accurately new generation or simulation techniques follow established models, theories,

observations, or measurements (Oberkampf et al. 2004). This dissertation focuses on the

similarity assessment of physical processes, especially motion-based transport problems

and fluid flows. These processes are commonly encountered across a range of scientific

disciplines, for example, in atmospheric sciences (Jolliffe and Stephenson 2012; Rasp

et al. 2020), biomedical applications (Olufsen et al. 2000), astrophysics (Dehghan and

Shakeri 2008), engineering in the form of aerodynamics and turbulence (Lin et al. 1998;

Moin and Mahesh 1998; Pope 2000), or combustion (Pitsch 2006). Partial differential

equations (PDEs) are typically used to describe these phenomena. If there are no analytic

methods to compute solutions to the underlying equations directly, which is common,

solutions can be computed approximately via numerical solvers. Such solvers employ

spatiotemporal discretizations to approximate continuous quantities; in the simplest case,

grids or tensors where quantities are stored in equally distant spatiotemporal positions,
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1 INTRODUCTION

similar to images that consist of pixels. This leads to the question of how such complex

data structures can be meaningfully compared in terms of their similarity.

Fundamentally, even high-dimensional data can be considered an element of a vector

space. As such, any metric in the corresponding space is a valid similarity measure, for

example, the metrics induced by the commonly used Lp norms. These metrics are the

high-dimensional counterparts to the simple scalar comparison example above and operate

by definition element-wise, i.e., they only consider pairwise comparisons of individual

vector components and aggregate them. This process ignores larger patterns or structures

in the data and can be suboptimal, as illustrated by a sequence of examples below.

Assume that a given reference data sample b should be compared to two other samples

a and c in terms of similarity. For both pairs, we focus on three different variants of

similarity:

(i) Element-wise similarity : Distances as computed with an element-wise metric.

(ii) Perceptual similarity : Similarity as determined by humans with normal vision.

(iii) Semantic similarity : Similarity based on the semantic methodology used to create

each sample.

First, we investigate the simple example of a checkerboard pattern consisting of 16 pixels

in Fig. 1.1. Black pixels correspond to the lowest value in the data range, and white

pixels have the highest value. Compared to the reference b in Fig. 1.1b, the first sample a

in Fig. 1.1a features the same checkerboard pattern translated by a single pixel. Sample

c in Fig. 1.1c contains the average value from the data range across its entire domain. It

is easy to observe that an element-wise analysis results in the highest possible distance

for the pair (b, a), while the pair (b, c) results in a distance magnitude that is 50% lower.

However, sample a is clearly more similar to the reference perceptually and semantically

since the fundamental checkerboard structure is preserved.

(a) Checkerboard a (b) Reference (c) Checkerboard c

Figure 1.1: Checkerboard similarity example.
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1 INTRODUCTION

Figure 1.2 shows a similar problem with more realistic images: An element-wise evaluation

results in a lower distance for the pair (b, c), while (b, a) is typically preferred in a

perceptual evaluation. Since image variants a and c rely on different transformations,

determining a semantic similarity is fundamentally difficult in this case.

(a) Image a (b) Reference (c) Image c

Figure 1.2: Image similarity example.1

Establishing semantic similarities is easier for simulation data, as the generation process

to create the data can be influenced. Figure 1.3 shows the density field extracted from a

two-dimensional simulation of a buoyancy-driven rising smoke plume around an invisible

force field directed downwards. Figure 1.3a and Fig. 1.3c are identical to the reference,

apart from added noise with different variances to the velocity during the simulation.

The noise variance for plume c had a larger magnitude compared to plume a, i.e., a more

substantial effect on the simulation. As such, the semantic similarity is higher for the

pair (b, a) due to a smaller difference in the initial condition of the simulations. This also

mostly holds in a perceptual evaluation, while an element-wise metric predicts a lower

distance for the pair (b, c).

(a) Plume a (b) Reference (c) Plume c

Figure 1.3: Plume similarity example in 2D.2

1Images from Zhang et al. (2018).
2Simulation data from Kohl et al. (2020).
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1 INTRODUCTION

(a) Plume a (b) Reference (c) Plume c

Figure 1.4: Plume similarity example in 3D, projected to 2D for visualization purposes.3

As a final example, Fig. 1.4 shows another smoke plume from a similar setup, however,

simulated in three dimensions and projected back to 2D for visualization purposes. In

this case, the noise variance for plume c had twice the magnitude compared to plume

a, and as a result, the semantic similarity is once again higher for the pair (b, a). An

element-wise metric predicts a lower distance for the pair (b, c). The significant difference

to the two-dimensional example is that meaningful perceptual evaluations are challenging

due to the additional dimension: depending on the projection and method of displaying

it, the perceptual similarity can change. While devices to display 3D data are conceivable,

there is a fundamental limitation to the data dimensionality perceivable by humans.

Table 1.1: Summary of different similarities for the examples from Figs. 1.1 to 1.4.

Checkerboard Image Plume (2D) Plume (3D)

Higher element-wise
Checkerboard c Image c Plume c Plume c

similarity

Higher perceptual clearly
Image a

towards highly
similarity Checkerboard a Plume a unclear

Higher semantic
Checkerboard a unclear Plume a Plume a

similarity

To summarize, Table 1.1 shows an overview of the examples above and illustrates three

fundamental insights regarding the similarity assessment of data from numerical PDE

simulations: First, element-wise metrics can be problematic in capturing perceptual or

semantic similarities. That means commonly used point-wise comparisons based on Lp

norms are suboptimal for meaningful comparisons of simulation data. Second, perceptual

similarity is not extendable to high-dimensional simulation data. While visual evaluations

might work for images and, to some degree, for low-dimensional simulations, they are not

3Simulation data from Kohl et al. (2023).
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1 INTRODUCTION

suitable for very complex high-dimensional data. Finally, semantic similarity can only be

determined in a controlled environment. While the examples shown here are specifically

designed to illustrate the mismatch between the results from element-wise metrics and

the semantic context of the data, this does not generally work. Determining semantic

similarity requires transformations that distort the data in a post-process or control

over the data generation process, as in the plume examples. However, computing such a

similarity measure is highly desirable, especially for numerical simulations. A typical use

case is an accuracy evaluation of new simulation techniques against a known solution

obtained, for example, from measurements or an expensive, highly accurate solver.

1.1 Contributions

In this dissertation, different methodologies to create metrics that follow a semantic

similarity definition as outlined above are proposed and contextualized with respect to

existing work. They operate on time-dependent two- or three-dimensional data from

numerical simulations of various transport- and motion-based PDEs and are realized

via deep learning techniques. The proposed methods rely on the following fundamental

approach: First, a semantic similarity definition based on the simulation process that cre-

ates the data is established. Second, a large amount of training data with a corresponding

semantic similarity score is generated using different solvers for various PDEs. Third,

a metric function based on a neural network with a specialized architecture is trained

on this training data. Finally, the neural network is validated on an extensive range of

test data, and its properties are analyzed with different evaluations to ensure that it is

reliable in practical applications. As shown below, the resulting metrics are superior to

various commonly used element-wise vector space metrics and other deep learning-based

image evaluation metrics. In addition, the proposed methods are analyzed with respect

to their robustness, such as rotation or scale operations. Furthermore, this dissertation

also includes a discussion of potential application domains using exemplary experiments

from Kohl et al. (2024). The following summarizes the individual contributions of each

work incorporated in this dissertation.

Learning Similarity Metrics for Numerical Simulations (Kohl et al. 2020)

This work presents the learned simulation metric (LSiM), a distance function for scalar,

two-dimensional simulation data. The training data consists of simulations of the

advection-diffusion equation, Burger’s equation, and the Navier-Stokes equations. The

ground truth similarity is determined via perturbations to the initial conditions of the

reference simulation, where the distance scales linearly with the perturbation strength.

5



1 INTRODUCTION

Furthermore, a Siamese neural network architecture is derived from the mathematical

properties of a pseudometric: First, a simulation pair is embedded into a high-dimensional

latent space with a feature extractor network. The resulting feature maps are normalized,

compared in the latent space via an element-wise distance, and aggregated to a scalar

distance value with learned operations. The model is trained with a custom correlation

loss function and evaluated on various generated out-of-distribution test sets and different

real-world data. The central result of this work is that a specialized metric can capture

semantic similarities better than established element-wise or image-based perceptual

metrics. This work’s idea, methodology, and findings build upon the results from my

master’s thesis (Kohl 2019).

Learning Similarity Metrics for Volumetric Simulations with Multiscale CNNs

(Kohl et al. 2023) In this second follow-up work, the above methodology is substan-

tially expended, in addition to considering vectorial, three-dimensional simulation data.

First, an enhanced similarity model is derived from entropy that adjusts the ground truth

distances to the reference simulation according to the decorrelation speed across different

physical systems. Furthermore, two data generation schemes based on spatio-temporal

coherences and perturbations to the initial conditions are formalized and automated.

The importance of a suitable training data distribution is highlighted, and an improved

multiscale neural network architecture is proposed. Furthermore, the tradeoff between a

large batch size and an accurate correlation computation from the first work is investi-

gated. The resulting volumetric similarity metric (VolSiM) is tested on a broad range

of out-of-distribution test data, and its invariance to rotation and scale operations is

evaluated. The central result from this work is that VolSiM is more suitable for analyzing

high-dimensional simulation data than established element-wise and learned metrics.

Furthermore, it generalizes well to substantially different simulations and is robust to

input transformations.

1.2 List of Publications

The two core publications accompanying this publication-based dissertation were pub-

lished as full papers at the peer-reviewed International Conference on Machine Learning

(ICML 2020) and the 37th AAAI Conference on Artificial Intelligence (AAAI 2023):

• Paper A: Georg Kohl, Kiwon Um, and Nils Thuerey (2020). ”Learning Similarity

Metrics for Numerical Simulations”. In: Proceedings of the 37th International

6



1 INTRODUCTION

Conference on Machine Learning (ICML 2020). Vol. 119, pp. 5349–5360. URL:

https://proceedings.mlr.press/v119/kohl20a.html.

• Paper B: Georg Kohl, Li-Wei Chen, and Nils Thuerey (2023). ”Learning Similarity

Metrics for Volumetric Simulations with Multiscale CNNs”. In: Proceedings of

the AAAI Conference on Artificial Intelligence. Vol. 37–7, pp. 8351–8359. DOI:

10.1609/aaai.v37i7.26007.

The published version of each paper is incorporated at the end of this dissertation: Paper

A can be found on Page 56, with the corresponding appendix on Page 68, and Paper B

begins on Page 89, with the corresponding appendix on Page 98. The data sets and source

code accompanying both projects can be found at https://github.com/tum-pbs/LSIM

and https://github.com/tum-pbs/VOLSIM, respectively.

Furthermore, additional results regarding the application of deep metrics are based on

the following work, which is under review and only available as a preprint at the time of

writing this dissertation:

• Georg Kohl, Li-Wei Chen, and Nils Thuerey (2024). Benchmarking Autoregressive

Conditional Diffusion Models for Turbulent Flow Simulation. arXiv: 2309.01745

[cs, physics]. URL: https://arxiv.org/abs/2309.01745.

1.3 Outline

The main contents of this dissertation below are structured as follows: Chapter 2

discusses relevant fundamental concepts and provides an overview of related research.

Chapter 3 describes the general proposed methodology for the similarity assessment

of data from PDE simulations. Potential application domains where such a similarity

assessment is beneficial are highlighted via exemplary experiments in Chapter 4. Chapter 5

critically reflects on the obtained results and provides an outlook for future work, and

Chapter 6 summarizes and concludes this dissertation. Finally, Chapter 7 provides

one-page summaries for each incorporated publication, including a brief overview of

author contributions and a copyright statement.
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2 Fundamentals and Related Work

This chapter provides an extensive overview of the fundamental concepts and related

work on deep learning, simulation of PDEs, similarity assessment, and their overlap.

2.1 Deep Learning

Recently, deep learning has become a cornerstone in various scientific and engineering

domains due to its ability to approximate arbitrary functions, given sufficient training

data and certain theoretical restrictions (Cybenko 1989; Hornik et al. 1989). Over time,

neural network architectures have evolved significantly, catering to diverse data types,

domains, and learning tasks. For a more detailed introductory overview of deep learning,

the reader is referred to Goodfellow et al. (2016) and Prince (2023).

Feed-forward Neural Networks Feed-forward neural networks, also known as multi-

layer perceptrons (MLPs), consist of multiple neurons connected from the input to the

output layer. Each neuron computes an affine transformation of its inputs with learnable

weights and applies a non-linear activation function to the result. After a range of early

experiments in the second half of the 20th century, the introduction of gradient-based

optimization for the weights via backpropagation (Rumelhart et al. 1986) marked the

beginning of deep learning. The work from Bengio et al. (2003) was among the first to

utilize and explore MLPs, but they are still commonly used. MLPs introduce minimal

prior knowledge about the data structure, making them ubiquitous but typically less

performant than specialized architectures.

Convolutional Architectures Convolutional neural networks (CNNs) are designed

to efficiently process data in regular Cartesian grids such as images while assuming local

interactions and some degree of translation invariance (LeCun et al. 1989). They utilize

convolutional layers, which apply a set of learnable filters to the input data, enabling

hierarchical feature extraction. Early on, CNNs have achieved remarkable success in

vision tasks like image classification (Krizhevsky et al. 2012; Simonyan and Zisserman

8



2 FUNDAMENTALS AND RELATED WORK

2015) or segmentation (Ronneberger et al. 2015), marking the begin of modern deep

learning techniques. Recently, CNNs are an established architecture across tasks and

domains and are common tools for learning with PDEs (see, e.g., Stachenfeld et al.

2022).

Graph Neural Networks Graph neural networks (GNNs) are tailored for data

represented as graphs. They operate on the graph structure and node features, allowing

them to capture relational information and dependencies within the data (Scarselli

et al. 2009). GNNs have been applied to various tasks, including link prediction, graph

classification, and node classification (Bronstein et al. 2017). They are ubiquitous for

learning transport-based simulations, which often require particle-based representations

or stretched, irregular, and unstructured grids (see, e.g., Sanchez-Gonzalez et al. 2020;

Pfaff et al. 2021).

Recurrent Architectures Recurrent neural networks (RNNs) are specialized for

sequential data, enabling them to capture temporal relations. Long short-term memorys

(LSTMs) are an early RNN variant that addresses the vanishing gradient problem and

enables learning of long-term dependencies (Hochreiter and Schmidhuber 1997). More

recently, transformers (Vaswani et al. 2017) have been applied to sequence modeling

and natural language processing, and they are the backbone of the recently emerging

large language models (LLMs) like the GPT variants (Radford et al. 2019) or LLama

(Touvron et al. 2023). In physical applications, recurrent architectures excel at learning

time-dependent phenomena, typically in combination with reduced order models (ROMs)

for the spatial dimensions (Wiewel et al. 2019; Han et al. 2021; Geneva and Zabaras

2022; Hemmasian and Farimani 2023).

Generative Models Generative models aim to learn the underlying probability distri-

bution of the training data and generate new samples from it. Variational autoencoders

(VAEs) learn a compressed latent representation of the data (Kingma and Welling 2014).

At the same time, generative adversarial networks (GANs) consists of a generator and a

discriminator model that compete against each other during a joint training (Goodfellow

et al. 2014). Another recently emerging generative model class are diffusion models that

learn to iteratively refine noise to samples from the data distribution (Ho et al. 2020;

Song et al. 2021). They are the main driver behind recent image generation models like

Dall-E (Ramesh et al. 2021) or Imagen (Saharia et al. 2022), and video generation models

such as Sora (Brooks et al. 2024). Generative techniques are important in the context of

9



2 FUNDAMENTALS AND RELATED WORK

physics simulations for tasks like flow prediction or enhancing details via super-resolution

(see, e.g., Xie et al. 2018; Kohl et al. 2024).

Training Procedures and Optimization Techniques Deep learning models are

typically trained using stochastic gradient descent (SGD) and extensions like Adam

(Kiefer and Wolfowitz 1952; Kingma and Ba 2015). Batch normalization and its variants,

dropout, or different regularization methods are commonly employed to improve training

stability and generalization performance (Srivastava et al. 2014; Ioffe and Szegedy 2015).

Transfer Learning and Pre-trained Models Transfer learning involves leveraging

knowledge from pre-trained models on large datasets to improve performance on related

tasks with limited data. CNN architectures pre-trained on ImageNet in the computer

vision domain serve as starting points for various downstream learning tasks and applica-

tions (Deng et al. 2009; K. He et al. 2016). Such pre-trained feature extractors can be

used via a Siamese network construction to create similarity measures that mimic human

perception (Zhang et al. 2018). Style transfer is another area of application where the

visual style from one learning task is combined with the semantic content of another

domain. For instance, the resulting visually appealing artistic transformations can be

used for images, videos, or fluid flows (Johnson et al. 2016; Ruder et al. 2016; B. Kim

et al. 2019a).

2.2 Simulation of PDEs

PDEs are fundamental mathematical tools for modeling physical transport processes,

which occur in many real-world phenomena such as heat conduction, fluid flow, and

electromagnetic wave propagation (Evans 2022). This dissertation focuses on the following

three PDEs: the advection-diffusion equation, Burgers’ equation, and the full Navier-

Stokes equations.

Transport-based PDEs The advection-diffusion equation in Eq. (2.1) describes the

transport of a passive quantity in a flow, where u denotes the velocity, d is the scalar

transported quantity, and ν is the diffusion coefficient or kinematic viscosity. The first

term describes the dissipation of the passive quantity caused by the fluid’s thermal

conductivity and viscosity, i.e., diffusion, and the second term describes the transport of
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the passive quantity along with the flow, i.e., advection.

∂d

∂t
= ν∇2d− u · ∇d (2.1)

Similarly, the Burgers’ equation in Eq. (2.2) describes how the flow’s velocity field changes

over time due to advection and diffusion. The diffusion term can also be interpreted as a

viscosity that models the deformation resistance of the underlying material. Furthermore,

this PDE can develop shock waves, i.e., discontinuities, making simulations more difficult

due to numerical challenges.

∂u

∂t
= ν∇2u− u · ∇u (2.2)

The incompressible Navier-Stokes equations describe the behavior of fluids like gases and

liquids via modeling advection, viscosity, and pressure effects in Eq. (2.3), as well as mass

conservation in Eq. (2.4). In addition to the notation above, P is the pressure, ρ is the

density of the fluid, and f denotes external forces like gravity. The pressure at a given

location corresponds to the force exerted by the mass of the surrounding fluid, and the

conservation of mass in this formulation indicates that the fluid resists compression.

∂u

∂t
+ (u · ∇)u = −∇P

ρ
+ ν∇2u+ f (2.3)

∇ · u = 0. (2.4)

Traditional Simulation Techniques Traditional approaches for solving PDEs include

finite difference (LeVeque 2007), finite element (Reddy 2019), and finite volume methods

(Versteeg and Malalasekera 1995). These numerical techniques discretize the PDEs in

space and time, allowing for the computation of approximate solutions with different

strengths and weaknesses depending on the chosen simulation approach. While effective,

traditional solvers may be computationally expensive and limited in their ability to

handle complex geometries or boundary conditions. Common simulation frameworks in

the domain of computational fluid dynamics (CFD) are open-source software like SU2

(Economon et al. 2015) and OpenFOAM (Weller et al. 1998), as well as commercial

products like Simcenter STAR-CCM+ (2004) and Ansys Fluent (2006).

Depending on the requirements of the simulation, different techniques can resolve more

or less details in the domain, leading to a trade-off between accuracy and computational

requirements. Standard methods include direct numerical simulation (DNS) that fully

resolves all frequencies of the flow, large eddy simulation (LES) that resolves large-scale

turbulent structures explicitly while modeling small scales through a subgrid-scale model,
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and Reynolds-averaged Navier-Stokes (RANS) simulations to produce a time-averaged

result. The reader is referred to Pope (2000) for a detailed overview of different simulation

methods and their mathematical background.

In computer graphics, fluids are typically simulated with more straightforward techniques,

as physical accuracy is generally not required, and visual fidelity is sufficient. Examples

are grid-based Eulerian approaches like the lattice Boltzmann method (LBM) from Frisch

et al. (1986), particle-based Lagrangian techniques like smoothed particle hydrodynamics

(SPH) from Monaghan (1992), or hybrid methods such as works from Stam (1999) and Zhu

and Bridson (2005). To achieve real-time performance or further reduce computational

costs of simulations, shallow water approaches or methods that add details in a post-

process, such as the work from T. Kim et al. (2008), can be employed. For a more

in-depth overview of fluid simulations in the context of computer graphics, the reader is

referred to Bridson (2015).

Enhancing Solvers with Deep Learning Deep learning techniques can complement

traditional solvers by accelerating convergence, improving stability, or enhancing accuracy.

For example, a neural network-based method to solve the large, sparse linear systems

encountered in a Eulerian simulation approach enabled the simulation of fluids in real-time

(Tompson et al. 2017). A range of methods focus on improving under-resolved simulations

with deep learning to achieve an accuracy that would traditionally be computationally

very expensive at a lower cost. Examples include improved data discretizations via

learned stencils (Bar-Sinai et al. 2019; Kochkov et al. 2021), or learned corrections to

a low-resolution trajectory provided by a solver (Sirignano et al. 2020; Um et al. 2020;

List et al. 2022). Geneva and Zabaras (2019) integrate uncertainty-aware deep learning

approaches in RANS simulations to quantify model uncertainty. Furthermore, generative

models like GANs or diffusion models can be used as a super-resolution post-process to

increase visual fidelity or simulation accuracy without impacting the solver trajectory

itself (Xie et al. 2018; Shu et al. 2023). For inverse problems like shape optimization or

flow control, differentiable PDE solvers allow for including the solver into an optimization

process to achieve predefined objectives (de Avila Belbute-Peres et al. 2020; Holl et al.

2020). Finally, deep learning techniques can also be used for artistic control over the

resulting flow via style transfer approaches (B. Kim et al. 2019a, 2020). Thuerey et al.

(2022) provide a detailed overview of different techniques for enhancing and replacing

PDE solvers with deep learning.

Replacing Solvers with Deep Learning Recent research has also explored the use

of deep learning to directly approximate solutions to PDEs in a fully data-driven manner,
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bypassing the need for traditional solvers during inference. Simulations based on particles

or with implicit representations typically require specialized learning methodologies

that make use of such data structures: As an early example for learned particle-based

simulations, the work from Ladicky et al. (2015) relies on regression forests for liquid

simulations. More recently, approaches based on continuous convolutions were developed

(Ummenhofer et al. 2020). Learning implicit representations of PDE solutions from data

has been realized with methods such as physics-informed neural networks (PINNs) and

Hamiltonian neural networks (Greydanus et al. 2019; Raissi et al. 2019).

There are two different paradigms to approaching simulations on regular meshes via deep

learning: First, ROMs, which learn a compressed spatial representation that is evolved in

time, and second, methods that operate directly on the input space. For the former, the

reduced representations are typically achieved with architectures similar to autoencoders.

The temporal latent model that evolves the resulting latent space forward in time can

take different shapes. Early on, MLPs (B. Kim et al. 2019b) and LSTMs have been used

successfully (Wiewel et al. 2019, 2020), but more recently transformer-based architectures

are becoming increasingly common (Geneva and Zabaras 2022; Hemmasian and Farimani

2023).

Different techniques are viable for the latter method of working directly in the input

space. Thuerey et al. (2020) replaced a RANS solver with a convolutional architecture

to directly predict the steady-state flow around airfoils with different shapes. Li et al.

(2021) proposed Fourier neural operators (FNOs) that transform the data to a spectral

representation allowing for processing frequencies individually. Furthermore, it has been

shown that even structurally simple CNN architectures can become powerful learned PDE

simulators (Stachenfeld et al. 2022). Takamoto et al. (2022) and Gupta and Brandstetter

(2023) provide various benchmark data sets of different PDEs and compare common

neural network architectures for fully data-driven flow prediction. More recently, diffusion

models were also applied as a replacement for traditional solvers, showing promising

improvements in accuracy and temporal stability compared to earlier learned simulators

(Lienen et al. 2023; Lippe et al. 2023; Kohl et al. 2024). Furthermore, curriculum-

based training strategies and attention mechanisms initially designed for the transformer

architecture have been used to improve the generalization abilities of autoregressive

neural surrogate simulators to unseen PDE parameters (Takamoto et al. 2023).

Simulations on irregular meshes are commonly tackled with GNNs. A range of works

relies on different message-passing or transformer-based architectures for the simulation

of various PDEs (Sanchez-Gonzalez et al. 2020; Han et al. 2021; Pfaff et al. 2021;

Brandstetter et al. 2022).
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2.3 Similarity Assessment

A range of established metrics exist for the similarity assessment of PDE simulations

and other high-dimensional data. The following provides an overview of traditional

metrics and various deep learning methodologies that can be used for more meaningful

comparisons across different domains.

Traditional Metrics Metrics induced by the Lp norms are highly prevalent for vector

spaces. Depending on the value of p, they are known as Taxicab/Manhattan distance,

Euclidean distance, Chebyshev distance, or Minkowski distance. In the context of

comparisons for images or other higher-dimensional data, they are also referred to

as mean absolute error (MAE), mean squared error (MSE), or peak signal-to-noise

ratio (PSNR). These metrics provide quantitative measures of similarity or dissimilarity

between data samples, and all have in common that they provide essentially element-wise

comparisons that ignore larger structures or patterns in the data. For example, Aggarwal

et al. (2001) provided theoretical insight on the usage of metrics based on Lp norms

for high-dimensional data, and Huynh-Thu and Ghanbari (2008, 2012) investigated the

limitations of the PSNR.

Other typical distance functions on vectors that boil down to element-wise metrics are

the cosine similarity and correlation-based metrics like the Pearson correlation coefficient

(PCC) or Spearman’s rank correlation coefficient (SRCC). The former measures the

angle between two vectors and is particularly useful in text mining and recommendation

systems. The latter indicate linear or monotonic relationships in two data samples,

i.e., how changes in one variable affect the other (Spearman 1904; Pearson 1920). In

information theory, variation of information indicates the information present in two sets

of data and the information shared between them, and it is commonly used for data

clustering (Meilă 2007). To compare probability distributions, the Wasserstein distance

or Kantorovich–Rubinstein metric is a standard tool (Kantorovich 1960). It is related

to the optimal transport problem, i.e., finding the most efficient way to transport a

fixed amount of resources from one distribution to another while minimizing the total

cost of transportation. As a result, it is also often referred to as the earth mover’s

distance. Furthermore, the Kullback–Leibler divergence measures the differences between

probability distributions more directly, without considering this transportation aspect

(Kullback and Leibler 1951).

In the domain of images, a widely used metric for comparing the similarity between two

images is the structural similarity index measure (SSIM). It is designed to assess the

perceptual quality of images by considering their structural information, luminance, and
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contrast (Z. Wang et al. 2003, 2004). This connection to the sensitivity towards the

structural changes of the human visual system makes it more robust and reliable for image

quality assessment than previously discussed metrics. Nevertheless, the formulation of

SSIM has a direct link to the PSNR for specific image degradations (Horé and Ziou 2010).

Furthermore, Nilsson and Akenine-Möller (2020) investigated a range of unexpected

and undesirable behaviors of SSIM. While this analysis was performed in the context of

rendered images in computer graphics, it still shows that SSIM exhibits similar issues

like element-wise metrics and is not an ideal choice for the similarity assessment of data

from numerical simulations.

Representation and Contrastive Learning Representation learning techniques,

such as autoencoders and VAEs, seek to capture meaningful representations of data

in a typically lower-dimensional space (for an overview, see Bengio et al. 2013). Such

representation spaces are commonly achieved via unsupervised learning, for instance,

from videos (Agrawal et al. 2015; Wang and Gupta 2015). While similarity assessments

can be performed directly in the representation space, this is typically suboptimal as the

space was not explicitly designed with similarity in mind. Instead, contrastive learning

methods aim to learn unsupervised representations by contrasting positive pairs, i.e.,

similar samples, against negative pairs, i.e., dissimilar samples. Early applications include

face verification or dimensionality reduction (Chopra et al. 2005; Hadsell et al. 2006).

Typically, Siamese neural architectures are used for contrastive learning in the context

of metrics. They consist of multiple sub-networks with shared weights, trained to learn

embeddings that maximize similarity for similar inputs and minimize it for dissimilar

inputs. Siamese architectures are widely used for similarity learning, one-shot learning,

and metric learning (see, e.g., Koch et al. 2015), but also for tasks like object tracking

(Bertinetto et al. 2016).

Invariances and Equivariances Invariance and equivariance properties are highly

desirable in similarity metrics, as they ensure robustness to transformations such as

translation, rotation, and scale. They enable meaningful comparisons across different

instances of the same phenomenon. In addition to simple data augmentations that

target an implicit learning process for equivariant and invariant representations, a range

of research is also dedicated to specialized neural network architectures that learn

such representations by design. Cohen and Welling (2016) proposed group equivariant

networks for translations, reflections, and rotation operations, and similarly learned

rotation equivariances were used for microscopy image analysis or volumetric data (Weiler

et al. 2018; Chidester et al. 2019). In the domain of physics simulations, Cohen et al. (2018)
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utilize CNNs for spherical images that commonly occur in weather and climate modeling,

and R. Wang et al. (2021) incorporate equivariances to different transformations for

improved generalization in the context of turbulent convection flows and ocean currents.

Perceptual Losses Perceptual losses are loss functions derived from deep neural

networks trained for specific tasks, such as image classification or object detection. By

incorporating such perceptual similarity measures into the loss function, models can be

trained to generate outputs that are perceptually more similar to ground truth samples

(Talebi and Milanfar 2018a). Training exclusively with element-wise losses can often lead

to overly smooth, blurry results, while adding perceptual losses helps to improve the

results in the high-frequency domain, like for highly textured areas (Dosovitskiy and

Brox 2016). One explanation for this behavior is that CNNs trained on images tend to

be biased towards the texture of objects rather than their shape (Geirhos et al. 2019).

Perceptual loss formulations are commonly used in image-based tasks like style transfer

and super-resolution (Johnson et al. 2016). Furthermore, losses based on learned metrics

have been applied to semantic image compression (Mier et al. 2021) or video anomaly

detection (Ramachandra et al. 2021).

Metrics based on Deep Learning Deep learning-based metrics allow for capturing

high-level semantic features and perceptual differences by measuring similarity in the

feature space of deep learning architectures. Early on, when deep learning emerged in

the vision domain, a range of data sets and databases that feature human evaluations of

images with different types and degrees of degradations and transformations were created

(Larson and Chandler 2010; Liu et al. 2014; Ponomarenko et al. 2015). Typical early

metric learning approaches directly learn these human evaluation results, for example,

via Siamese CNN architectures (Amirshahi et al. 2016; Bosse et al. 2016; Kim and Lee

2017). It can be shown that the resulting metrics correspond to human perception of

similarity, as, for instance, evaluated by Berardino et al. (2017) via the eigenvectors of the

Fisher information matrix. Further improvements for this general methodology include

predicting a distribution of human evaluations instead of the evaluations themselves

(Prashnani et al. 2018; Talebi and Milanfar 2018b). There is a large body of research

dedicated to similar metric learning methods for domains with different properties, which

include voices and general audio signals (Zhang and Duan 2017; Avgoustinakis et al.

2020), interior and product design (Bell and Bala 2015), satellite image patch matching

(H. He et al. 2019), textual and semantic similarity (Benajiba et al. 2019), and rendered

images (Andersson et al. 2020).
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In the context of training and evaluating probabilistic generative models, the inception

score was proposed (Salimans et al. 2016). It combines an evaluation of the feature

maps from the Inception architecture trained on ImageNet (Szegedy et al. 2015) with the

Kullback–Leibler divergence. When employed as a similarity measure, it investigates the

coverage and quality of the distributions generated by a model against the underlying

ground truth data distribution. Heusel et al. (2017) improved upon this idea by using the

Fréchet distance (a variant of Wasserstein distance) in conjunction with Inception model

features, leading to the Fréchet inception distance (FID) commonly used to evaluate

GANs and other generative models.

As an important milestone for deep metrics in the image domain, the seminal work

from Zhang et al. (2018) investigated the features of a range of common ImageNet

CNN architectures and different training modalities for their usage in perceptual image

quality assessments. The authors found that starting from a pre-trained architecture

like AlexNet (Krizhevsky et al. 2012) and fine-tuning the model with human perceptual

evaluations lead to a highly accurate, versatile, and commonly used metric titled learned

perceptual image patch similarity (LPIPS). However, they also report that random,

untrained networks perform surprisingly well as perceptual metrics.

More recently, research on deep metrics either focuses on methodological and archi-

tectural improvements or investigates the limits of existing methods. For the former,

self-supervised contrastive techniques were used to learn robust representations that

work well as perceptual metrics, even without substantial fine-tuning (Madhusudana

et al. 2022). In addition, Golestaneh et al. (2022) utilize a hybrid approach consisting of

CNNs to learn local similarities and a transformer-based architecture to combine them

for non-local interactions. Furthermore, a self-supervised self-consistency objective was

proposed between an image and its equivariant transformation. Similarly, Lao et al.

(2022) employed transformers to connect the similarity assessment of individual patches

via CNNs by learning their relationships and contributions. To investigate the limitations

of existing metrics and improve the general understanding of metric learning, Kumar

et al. (2022) analyzed the relationship between ImageNet classification accuracy and

performance as a metric, measured with a perceptual score. The authors found that

modern vision architectures with medium to high ImageNet accuracy, including ResNets

(K. He et al. 2016), EfficientNets (Tan and Le 2019), and Vision Transformers (Dosovit-

skiy et al. 2021) perform worse than simple CNNs as learned metrics. Furthermore, a

critical bias in metrics trained on common data sets for image quality assessment was

investigated by Ding et al. (2022): Metrics trained with perturbed images are overly

sensitive to resampled textures. The authors propose a similarity model that combines

structural and textural similarities to mitigate this shortcoming. Other problems in

17



2 FUNDAMENTALS AND RELATED WORK

terms of perturbation tolerance were revealed, indicating that learned metrics can suffer

substantially from translation or scale operations of the inputs (Ghildyal and Liu 2022;

Tsubota et al. 2022). Finally, various adversarial attacks on image metrics were docu-

mented by Kettunen et al. (2019) and Ghildyal and Liu (2023), indicating that most

learned metrics still lack general robustness.

Similarity Assessment of PDE Simulations Assessing similarity between PDE

simulations poses unique challenges due to the high-dimensional nature and complex

structures and patterns in the data, but this remains an underexplored research direction.

In weather forecasting, the displacement and amplitude score was an early approach to

overcome the limitations of Lp norms by combining several heuristics with an optical

flow-based distance function (Keil and Craig 2009). This distance is determined via

the magnitude of a morphing velocity field required to transform one high-dimensional

data point to the other. Such optical flows can be computed with traditional variational

techniques or via deep learning (Horn and Schunck 1981; Ilg et al. 2017). In the

first publication provided alongside this dissertation, an optical flow-based approach is

investigated as a baseline metric as well (Kohl et al. 2020). Such methods can work well

when changes are small but struggle once the fundamental assumption of optical flow

is invalidated, i.e., that a particular locally confined structure or object moves between

both inputs. For example, this can quickly happen when a vortex fully decays into fine

scales or when two vortices merge into a larger one.

In the context of turbulent flows in CFD, frequency-based evaluation metrics are

widespread (Pope 2000; Pitsch 2006). Such distance functions circumvent some is-

sues of element-wise comparisons; for example, translated structures still exhibit similar

spectral decompositions. However, their unstable behavior tends to be suboptimal when

used as a comparison technique for individual data snapshots. Instead, they are ideal as

a statistical tool when averaging spatially, temporally, or sample-wise over large amounts

of data to achieve meaningful comparisons. This issue was also investigated by Kohl

et al. (2024) in the context of evaluating diffusion models for turbulent flow prediction.

Siamese networks have been applied to retrieve fluid descriptors in a manner similar to

metric learning approaches in the image domain. In their work, Chu and Thuerey (2017)

pre-computed a repository of high-resolution flow snapshots that should be utilized to

synthesize additional detail for a low-resolution simulation. A Siamese CNN architecture

trained with a contrastive-style loss function is used to find a suitable descriptor from

the repository. While such an approach is fundamentally suitable as an explicit similarity

metric, the methods discussed in this dissertation improve upon a simple contrastive
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setup with positive and negative pairs via more nuanced data samples with different

degrees of dissimilarity from the reference.

Furthermore, crowd-sourced evaluations via the human visual system were proposed to

assess simulations in the domain of physics-based animation and for the comparison of

different discretization methods in the context of PDE simulations (Um et al. 2017, 2021).

While their results show that perceptual evaluations for data from PDEs are possible,

meaningful, and robust, several limitations are improved with the metrics based on deep

learning discussed in this dissertation. First, visual evaluations require user studies

that are slow and expensive. Second, they require careful consideration of formulations

and questionnaire setup to avoid effects like framing, i.e., influences of the phrasing on

the outcome of the question. Third, high-dimensional data can only be evaluated via

projections to lower dimensions perceivable for humans, inevitably leading to similarity

assessments influenced by the projection method, visualization techniques, or the loss of

information due to the projection.

More recently, the comparison of distributions of turbulent flow fields has been tackled

by Lienen et al. (2023). Like the FID, their work combines a Wasserstein metric with

an underlying handcrafted distance function. First, the flow domain is separated into

regions with similar velocity distributions via clustering. Afterward, a turbulence-specific

distance for each area is derived from velocity and vorticity point statistics in the flow.

The resulting distributional metrics are used to evaluate how well a predicted distribution

of turbulent flow fields matches a known target distribution.

Evaluating the similarity of unsteady phenomena over time is another common but chal-

lenging topic. For example, in the context of predictions for chaotic systems, evaluation

results of different methods against a known ground truth trajectory can substantially

depend on the investigated temporal period when simply aggregating distances of individ-

ual temporal snapshots. While metrics going substantially beyond such straightforward

aggregations remain an open problem, first steps have been taken by Gilpin (2021).

This work analyzes the correlation between different temporal forecasting metrics and

mathematical systems properties such as entropy, fractal dimension, and the Lyapunov

exponent.
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The following summarizes the general methodology of the two works incorporated in this

dissertation. First, it is outlined how Siamese architectures can be utilized to compute

distance functions suitable for the similarity assessment of PDE data. Afterward, the

proposed semi-automatic data acquisition pipelines from different sources of simulation

data and the training methodology are discussed. Finally, some key results from both

works are highlighted.

3.1 Metrics via Siamese Architectures

The proposed metric architectures draw inspiration from perceptual metrics from the

image domain, such as LPIPS (Zhang et al. 2018). They involve comparing network

activations in the latent space of a feature extractor CNN instead of directly comparing

data in the input space. A Siamese architecture is employed, i.e., both inputs undergo

the same feature extraction process through a shared base network. Different network

architectures for this feature extractor are viable. Still, the most robust results in

our experiments were obtained with comparatively simple architectures like AlexNet

(Krizhevsky et al. 2012) in two dimensions and a custom multiscale architecture for

three-dimensional data. These findings align with recent research on images: Kumar

et al. (2022) report the strong performance of relatively simple architectures compared

to modern network variants closer to the state-of-the-art on other learning tasks.

The feature maps extracted by the Siamese network are normalized to address discrepan-

cies in magnitude across different layers and features. Once again, different techniques

were investigated in the first incorporated work, where a distribution-based normalization

for the magnitude of the feature vectors was shown to work well. After the normalization,

the latent spaces from both branches of the Siamese network corresponding to each input

are compared via an element-wise comparison operation. The final step to achieve a

metric is compressing the per-feature differences to a scalar distance value. Depending

on the dimension, different learnable and non-learnable functions are typically employed.

Combining different features should involve learned weights such that it is easy for the
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Figure 3.1: Siamese CNN architecture to compute a distance function from two input fields.
Bold operations contain learned weights, and the shape of the results from each operation is
illustrated at the bottom. In this example, inputs have two spatial dimensions, and the base
network that extracts features consists of three layers with four feature maps each.4

optimization process to adjust the relative weight of the different features, especially

when training with a frozen, pre-trained feature extractor. Figure 3.1 illustrates this

process of transforming two inputs to a scalar distance value with a Siamese neural

network approach. As shown in Kohl et al. (2020), this general methodology ensures the

mathematical definition of a pseudometric. Compared to a full metric, only the identity

of indiscernible is relaxed, i.e., a distance of zero for different inputs is allowed, while

identical inputs have to receive a distance of zero.

3.2 Data Acquisition and Training

To train a metric for PDEs in a supervised manner, suitable training data has to be

generated and equipped with the corresponding ground truth distances. Similar to

training data for metrics in the image domain, the training data contains a reference state

s0 and variations s1, s2, . . . , sn to that reference, with a decreasing degree of similarity.

However, knowledge about the physical behavior of the underlying PDE is introduced

instead of creating variations via simple transformations as a post-processing step.

Figure 3.2 illustrates two approaches to achieve this: either directly via the solver that

is used to create the reference or with a spatiotemporal data repository if no solver is

available. For the former, a reference simulation is run to create s0. Afterward, one

parameter or initial condition pi is varied by adding a perturbation ∆ with an increasing

factor 1, 2, . . . , n to create s1, s2, . . . , sn. For the latter, a cutout at spatiotemporal

position p is taken from a data repository as s0, and variants are created via additive

spatiotemporal perturbations of magnitude ∆, once again scaled with increasing factors

1, 2, . . . , n. For both methods, finding suitable magnitudes of ∆ is difficult and requires

4Figure from Kohl et al. (2020).
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from a numerical solver (top) and a spatiotemporal data repository (bottom). For the former,
increasingly different states from the reference are created via perturbations to the simulation’s
initial conditions. For the latter, changes to the spatiotemporal cutout position are used.5

human intuition: When sequences change too little, they are too “easy”, i.e., do not

show sufficiently interesting physical behavior for learning, but when changes are too

big, they become too “hard” as barely any similarity is left between states. As such, the

first incorporated work uses heuristics as a guide for adjustments, while the second work

improves upon this via a correlation evaluation of an MSE proxy distance against the

intended order s0, s1, . . . , sn of the simulations, as shown in Fig. 3.2. Furthermore, the

difficulty can be influenced by noise added to a field of the PDE simulation or with random

spatial jitters when extracting data from a repository. The processes outlined above are

repeated across different PDEs, initial conditions or cutout positions, and random seeds

to generate complete data sets. Figure 3.3 shows an example from both data acquisition

methods, consisting of the reference simulation and its perturbed variations.

5Figure from Kohl et al. (2023).
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3 SIMILARITY ASSESSMENT OF SIMULATION DATA

Figure 3.3: Volumetric example sequences corresponding to s0, s1, . . . , s10 projected to two
dimensions for visualization purposes. The upper row contains the density fields of smoke
plumes created via a simulation-based acquisition, where an invisible circular force field is at
increasingly larger vertical positions from left to right. The lower row features isotropic turbulence
at increasingly different spatiotemporal positions obtained with a repository-based acquisition.6

Next, ground truth distances for each state pair (si, sj) where i, j ∈ {0, 1, . . . , n} serve as

the training target during optimization, as well as the desired solution during inference.

The relative order of the state pairs is established by the data generation as outlined

above, allowing for comparative statements like

g(s0, s1) < g(s1, s3) < g(s1, s6) < g(s0, s9), (3.1)

where g denotes the distance function. Yet, defining absolut distance values for learning

requires additional assumptions: As done in Kohl et al. (2020), the simplest solution is

linearly distributing the distances in [0, 1] via

g(si, sj) =
j − i

n
. (3.2)

However, additional information from the physical system can be used to account for

different decorrelation speeds in different physical systems related to the size of ∆ outlined

above. As derived in more detail in Kohl et al. (2023), this can be achieved with

g̃(si, sj) =
log
(
10c j−i

n + 1
)

log (10c + 1)
, (3.3)

where c is a system-dependent decorrelation speed. During training, directly comparing

individual distance predictions d for a state pair from a neural network against g is a

viable option. However, this does not explicitly reward fulfilling relative statements like

Eq. (3.1). Thus, an additional loss term based on correlation is introduced in Kohl et al.

(2020), which rewards distances that are correct relative to each other for all state pairs,

even if the absolute values do not match the ground truth. Identical data augmentations

like random flips, rotations, or crops on both states from a pair without altering the

corresponding distances can increase the resulting metrics’ robustness.

6Figure from Kohl et al. (2023) showing data extracted from a repository by Perlman et al. (2007).
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3 SIMILARITY ASSESSMENT OF SIMULATION DATA

3.3 Evaluations and Results

The most relevant evaluation for metrics based on deep learning is a generalization

analysis on out-of-distribution data. For this purpose, both works incorporated in this

dissertation evaluate all considered metrics on various such test sets. While most data and

their ground truth distances are simulated or collected with the acquisition techniques

above, they differ in the considered PDE or varied initial conditions. Furthermore, data

from real-world scenarios and different domains is used. The former consists of multi-view

reconstructions from real flows and measured weather data sets, while the latter features

images, videos, or artificially translated shapes.

To measure the performance of different metrics, the SRCC or PCC of ground truth

distances against predicted distances are utilized. The former only considers if the

distances are ordered correctly relative to each other, while the latter measures linear

relationships. Considering these correlation values, metrics based on deep learning

consistently outperformed element-wise metrics across the investigated test sets, i.e.,

computed distances that come closer to the order dictated by the data generation. The

PDE-specific metrics also improved upon specialized image metrics such as the SSIM

or LPIPS, apart from image and video data sets. Furthermore, other learned distance

function baselines were considered. They include a metric based on optical flow or a non-

Siamese architecture that learns distances directly without relying on the inductive biases

of mathematical metric properties. The former breaks easily when changes between inputs

become too large or when the inherent assumptions of optical flow are violated. While

the latter can learn distances surprisingly well, they lack robustness and generalization

beyond the training domain.

Another critical analysis is the invariance to transformations like translation, rotation,

and scale operations. Metrics should be fully invariant if both inputs are transformed with

the same operation. Data augmentations provide some robustness, and the multiscale

CNN architecture introduced in the second incorporated work helps further. Nevertheless,

this is still an ongoing research direction, as discussed in more detail below and shown in

related work in the image domain (Ghildyal and Liu 2022; Tsubota et al. 2022).

Finally, ablation studies help to understand deep metrics and motivate design decisions.

In both works incorporated in this dissertation, a range of ablations on different aspects

are performed, including neural network architecture components, different loss functions,

configurations of the proposed loss, and training data difficulty and distribution.
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4 Applications of Metrics based on Deep Learning

This chapter highlights different applications of deep learning-based metrics: their usage

as accuracy evaluation tools and applications as differentiable loss functions during

training. The presented data, models, and results are based upon the work from Kohl

et al. (2024), which is under review at the time of writing this dissertation. While this

work mainly investigates the usefulness of autoregressive conditional diffusion models for

flow prediction, applications of the LSiM metric from the first publication incorporated

in this dissertation are also showcased. The learning problem in the work from Kohl

et al. (2024) consists of the fully data-driven prediction of temporally unsteady turbulent

fluid flows given an initial condition. Different neural network architectures and training

paradigms for this task were benchmarked on multiple experiments based on different

fluid flows: First, an unsteady transonic cylinder flow with a Karman vortex street behind

an immersed cylinder, and second, forced isotropic turbulence simulated via DNS.

The first experiment features compressible flows that exhibit complex shock waves in a

transonic regime and are highly turbulent at a Reynolds number of 105. During training,

a set of flows with different Mach numbers Ma in the range Ma ∈ [0.5, 0.9] are used.

During inference, the models are required to extrapolate to Mach numbers outside of the

training domain (Traext) and interpolate to unseen Mach numbers inside the training

range for short temporal rollouts of about two vortex shedding periods (Traint) and

longer temporal rollouts of eight vortex shedding periods (Tralong).

The second experiment consists of predicting flows in different two-dimensional planes

taken from three-dimensional isotropic turbulence from the Johns Hopkins Turbulence

Database (Perlman et al. 2007). This learning problem is inherently complex due to its

underdetermined nature, as the flow in a plane also depends on the motion outside the

plane. During training, the neural network architectures receive a set of planes and are

required to generalize to a test set with new plane locations (Iso).

Different learning methodologies were investigated for these experiments: Autoregressive

conditional diffusion models (ACDM) are derived from denoising diffusion probabilistic

models (DDPMs) and feature a U-Net architecture (based on Ronneberger et al. 2015)

as a model backbone with modernizations from Ho et al. (2020). Similar to DDPMs,
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4 APPLICATIONS OF METRICS BASED ON DEEP LEARNING

they operate by iteratively denoising a random initialization to the target flow state via

conditioning on the previous simulation snapshots. This temporal one-step diffusion

model is then unrolled autoregressively to achieve arbitrarily long simulation rollouts

during inference.

The backbone U-Net architecture of ACDM can also be used without the iterative DDPM

paradigm by training it as a simple next-step predictor that receives a previous simulation

state and directly predicts the next one (U-Net). Unrolled training (U-Netut) similar to

the work from Sirignano et al. (2020) and Um et al. (2020) is also utilized. Such gradient

propagation through longer state trajectories during training helps to increase stability

during inference.

Next, common architectures for learning PDE solutions are evaluated, which include

dilated ResNets (ResNet) from Stachenfeld et al. (2022) and Fourier neural operators

(FNO) from Li et al. (2021). Both are trained as next-step predictors like U-Net and

unrolled autoregressively during inference. The former utilizes skip connections proposed

for ResNets (K. He et al. 2016), allowing for efficient information transfer between

network layers and different dilations in the convolution kernels to model local and

global interactions. The latter employs Fourier transformations for its features to treat

individual spectral components separately.

Finally, latent-space transformer architectures (TF) are analyzed, which are based on a

spatial autoencoder model with an additional latent transformer that iteratively evolves

the latent representation over time. They are trained on longer simulation rollouts to

provide suitable learning signals to the latent transformer. Still, transformer architectures

can infer sequences from a single initial state: First, the input is encoded, then the latent

model evolves the latent space, and afterward, the latent trajectory is transformed back

to the input space via the decoder model.

The following section illustrates how metrics based on deep learning can help to evaluate

the accuracy of the resulting model trajectories for the experiments outlined above.

Furthermore, it is shown that utilizing such metrics as differentiable loss functions during

training can have benefits compared to training exclusively with element-wise comparisons.

Unless denoted otherwise, the mean performance over all sequences from each data set

and multiple training runs are reported below. For Iso, two training runs with different

random seeds are evaluated, and three runs from Tra. In addition, five random model

evaluations are considered per trained model for the probabilistic ACDM method.
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4 APPLICATIONS OF METRICS BASED ON DEEP LEARNING

4.1 Accuracy Evaluations

The behavior of three different metrics is compared to show how metrics based on deep

learning can be useful in evaluating the accuracy of the predicted model trajectories:

MSE, Pearson’s distance based on the PCC, and LSiM are employed in this comparison

on the Tralong test set. Lower values indicate better reconstruction accuracy for all

metrics, and errors are computed via an average across data set sequences, training

runs, probabilistic model evaluations, and simulation fields, i.e., velocity, pressure, and

additionally density for Tra.
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Figure 4.1: Error evolution over the temporal rollout on the Tralong test set for different neural
network architectures trained as surrogate models. Shown are evaluations with the MSE (upper
left), Pearson’s distance (upper right), and LSiM (lower left). While the element-wise metrics at
the top struggle to discern the quality of various predictions, LSiM separates FNO, U-Net, and
ResNet, which perform differently compared to the remaining architectures. These differences
are quantitatively measured via a spectral analysis of time steps t ∈ [140, 240] (lower right) and
qualitatively visualized in Fig. 4.2.

Figure 4.1 shows the error over time when evaluating the different architectures with

the three similarity measures. Across evaluations, U-Net is among the worst-performing

architectures. MSE and Pearson’s distance behave pretty similarly regarding the relative

performance of the different models. Note that there is a substantial difference between

LSiM and the other two element-wise metrics: While the former can separate the temporal

error of ResNet and FNO from the remaining architectures, the latter attest a similar

behavior to all models after time step t = 100. The physical differences between these

predictions can be quantified with a spectral evaluation along a line downstream of the
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4 APPLICATIONS OF METRICS BASED ON DEEP LEARNING

immersed cylinder for t ∈ [140, 240] shown in Fig. 4.1 at the lower right. The predictions

of ResNet, FNO, and U-Net exhibit a different physical behavior than the remaining

models indicated by differences from the simulation in the frequency spectrum.

To qualitatively compare the evaluation metrics, their match with a perceptual analysis of

an exemplary trajectory can be utilized. Figure 4.2 displays representative visualizations

for the prediction of one sequence from Tralong. After about t ≈ 100, the model

predictions are fully decorrelated from the simulation trajectory, but there is a clear

qualitative difference regarding the failure modes later on. While U-Net produces high-

frequency artifacts, ResNet and FNO result in an incorrect mean flow prediction without

vortices. Only TF, U-Netut, and ACDM keep a physical vortex-shedding behavior

throughout the entire rollout. MSE and Pearson’s distance fail to capture this difference,

as, from an element-wise perspective, a pure mean flow might even be closer to the

simulation trajectory than a decorrelated yet plausible trajectory with vortices in different

positions. LSiM, on the other hand, clearly separates models with physically plausible,

decorrelated predictions from models that fully deteriorate, indicating the benefits of a

deep learning-based similarity assessment.
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Figure 4.2: Pressure predictions for an example sequence from Tralong across architectures.
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4.2 Differentiable Loss Functions

In addition to accuracy evaluations, metrics based on deep learning can also be utilized as

differentiable loss functions, similar to perceptual losses used for different learning tasks

in the image domain (Dosovitskiy and Brox 2016; Johnson et al. 2016). Above, the U-Net

model was trained solely with an element-wise MSE loss function, and employing LSiM

as an additional loss term during training is investigated in more detail in the following.

Given a predicted state s and a corresponding ground truth state ŝ, the training loss

follows the form of

LMSE+LSiM = (s− ŝ)2 + λ ∗ LSiM(s, ŝ). (4.1)

In the following, the impact of λ, the weight that controls the influence of the LSiM loss,

is investigated. U-Net models trained with e.g., λ = 10−1, are denoted by U-Netλ1e-1.

Note that λ ≈ 10−2 leads to a similar overall loss magnitude for the MSE and LSiM

term during training. The resulting models are evaluated in terms of their accuracy,

temporal stability, and spectral statistics on the out-of-distribution test sets to quantify

the benefits of such training objectives.

Accuracy The predictions of the U-Net variants with different λ are evaluated via the

MSE and LSiM to measure accuracy. Errors are computed via an average across data set

sequences, training runs, time steps, and fields. Table 4.1 shows the accuracy on the test

sets Traext, Traint, and Tralong from the transonic cylinder flow experiment, and Iso

from the isotropic turbulence case. Errors of models that diverge during inference are

displayed in gray with factors of 109 (b) in addition to the error scaling shown in the

second table row. Choosing a suitable loss magnitude of around λ = 10−3 substantially

reduces errors in terms of LSiM across test sets. In addition, the added loss term

consistently improves the prediction performance over the rollout in terms of the MSE.

Note that the MSE errors on Tralong for large values of λ do not follow the same pattern

Table 4.1: Accuracy evaluation for training U-Net with LSiM losses of different strength λ.

Traext Traint Tralong Iso

MSE LSiM MSE LSiM MSE LSiM MSE LSiM
λ (10−3) (10−1) (10−3) (10−1) (10−2) (10−1) (10−2) (10−1)

— 3.1± 2.1 3.9± 2.8 2.3± 2.0 3.3± 2.8 3.2± 0.7 8.9± 1.4 25.8± 35 11.3± 3.9
1e–5 4.2± 2.9 4.5± 3.0 2.6± 2.2 2.1± 2.0 4.6± 2.7 8.5± 2.9 67.4± 75.7 12.4± 3.8
1e–4 2.3± 1.2 3.7± 2.6 1.6± 1.4 2.0± 1.8 2.7± 0.6 7.8± 1.8 12.3± 9.3 11.8± 2.5
1e–3 2.9± 1.9 1.7± 0.8 2.2± 2.3 1.5± 0.9 2.7± 0.6 7.7± 2.1 6.3± 3.1 9.4± 2.8
1e–2 4.5± 1.3 3.5± 1.1 3.0± 2.3 1.8± 0.9 2.4± 0.2 10.0± 2.3 0.1b± 0.2b 15.3± 1.2
1e–1 5.8± 1.8 3.0± 0.8 5.2± 1.9 2.3± 0.6 2.9± 1.2 11.3± 0.7 12b± 29b 15.0± 1.0
1e0 6.8± 1.5 4.8± 1.1 6.6± 3.0 2.4± 0.7 2.5± 0.2 11.4± 1.0 17b± 552b 14.9± 1.0
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as for all other cases. This is caused by the suboptimal behavior of element-wise metrics

outlined in Section 4.1, and not reflected in the physical prediction quality as also visible

in the example trajectories in Fig. 4.5. Adding minimal amounts of the LSiM loss

term with λ = 10−5 decreases performance. This behavior is most likely caused by

the additional computations that lead to overly complex optimization landscapes and,

thus, suboptimal gradient signals. Using excessively large factors for the loss term, such

that it predominantly influences the overall loss magnitude, causes problems. Similarly,

when training exclusively with loss metrics based on deep learning, the optimization

process can get stuck in deteriorated solutions. During inference, this causes models to

aggressively diverge after a few prediction steps, leading to substantial errors, especially

on Iso as shown on the right in Table 4.1.

Temporal Stability The magnitude of the temporal rate of change is measured to

assess the temporal stability of the different prediction trajectories. For states st and

st−1 at time t or t− 1, respectively, it is computed as

∥∥∥∥
(st − st−1)

∆t

∥∥∥∥
1

for every normalized time step ∆t. It indicates whether a surrogate simulator preserves

the expected evolution of states as given by the reference simulation: If predictions

collapse, the rate of change approaches zero, and if they explode, the rate of change grows

substantially beyond the reference. Figure 4.3 shows this temporal stability evaluation

averaged across data set sequences and training runs for the U-Net models on Tralong

and Iso. In line with the accuracy, U-Netλ1e-3 exhibits improved temporal stability

compared to U-Net trained solely with an MSE loss. Choosing unsuitable λ causes

models to diverge earlier from the reference trajectory when evaluating the difference

between prediction steps for Tralong and Iso.
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Figure 4.3: Temporal stability evaluation via the rate of change for U-Net models trained with
LSiM losses of different strength λ on Tralong (left) and Iso (right).
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Spectral Behavior Evaluations for analyzing the spectral behavior of the models

trained with LSiM are tailored to the investigated data set: For Tra, the amplitudes

corresponding to different spatial wavenumbers of the horizontal motion across a vertical

line in the flow are analyzed in an average over time. On Iso, the temporal frequency

of the x-velocity is evaluated and averaged across every spatial point in the domain for

a more stable analysis, as this case is isotropic. A single trajectory from the test set is

employed in both cases, and the mean of the resulting spectra across trained models is

used. As shown in Fig. 4.4, a spectral behavior closer to the simulation can be observed

across the frequency band for U-Netλ1e-3 compared to U-Net on both, Tralong and Iso.

Smaller values of λ still improve results on Tralong but reduce spectral accuracy on Iso,

while too large λ deteriorate predictions in both cases, with a more severe effect on Iso.
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Figure 4.4: Spatial frequency analysis along a vertical line downstream on a sequence from
Tralong (left) and temporal frequency on a sequence from Iso (right) for models trained with
LSiM losses of different strength λ. Missing models on Iso diverge during inference, resulting in
frequency spectra that are substantially different from the simulation and are thus omitted.

To summarize, training with deep metrics as additional terms in the loss function has

clear benefits regarding the underlying neural network architecture’s accuracy, temporal

stability, and frequency behavior. This can also be confirmed qualitatively, as illustrated

by the exemplary sequence visualizations of the pressure field from Tralong in Fig. 4.5

and the vorticity from Iso in Fig. 4.6. Nevertheless, this added loss term requires a

suitable choice for the loss weight hyperparameter, as the model performance might

degrade otherwise.
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Figure 4.5: Pressure predictions for a sequence from Tralong for U-Net models trained with an
additional LSiM term weighted by different values of λ in the training objective.
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5 Outlook

There are two main directions future research in the domain of learned similarity metrics

for PDE simulations could take besides the straightforward application as generic accuracy

evaluation tools for various learning tasks. First, existing metric learning approaches

can be leveraged for new applications and downstream learning tasks. In the image

domain, learned perceptual metrics were successfully employed for downstream tasks like

image generation (Dosovitskiy and Brox 2016), style transfer, super-resolution (Johnson

et al. 2016), and more recently for semantic image compression (Mier et al. 2021), or

to determine anomalies in videos (Ramachandra et al. 2021). Similarly, the methods

proposed here can enhance a variety of downstream learning tasks on PDEs simulations

as a loss function, as outlined in Section 4.2. Example learning tasks include fluid

super-resolution (Xie et al. 2018), data-driven flow prediction (Kohl et al. 2024), or

correction learning with solver integration (Um et al. 2020).

Second, several limitations of the proposed deep learning-based techniques remain that

can be addressed in future work. The main areas for improvement are the learning

approaches themselves, limitations concerning the data domain and modality, as well as

interpretability and explainability.

Learning Approach As discussed in Chapter 3, the semi-automatic data generation

techniques require human intuition to choose perturbed parameters and adjust their

perturbation strength. This limits direct scalability to substantially more PDEs or initial

conditions, but two potential directions can circumvent such limitations: First, integrating

an additional optimization process that adjusts perturbation strengths is a step towards

automating this process. However, such methods are computationally expensive and

might not help to choose suitable parameters to vary. Second, employing unsupervised

representation learning instead of explicit ground truth distances can remove the need

for human intuition. Recently, self-supervised methods based on Lie symmetries have

been applied to learning tasks with PDEs, but such representations are feasible as deep

similarity measures with little adjustments (Mialon et al. 2023).
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Similarly, Madhusudana et al. (2022) showed that self-supervised representations created

via contrastive learning approaches are promising tools for metrics in the image domain.

Fine-tuning learned representations with explicit supervision as a secondary training step

is an option to increase performance with limited labeled data. As an additional benefit,

self-supervised learning via invariant or equivariant representations as proposed by Cohen

and Welling (2016), Weiler et al. (2018), and R. Wang et al. (2021) make learned metrics

robust to different input transformations. In the image domain, it has been demonstrated

that learned metrics are highly sensitive to operations like translations (Ghildyal and

Liu 2022) or scaling (Tsubota et al. 2022). While first steps towards robust metrics for

PDE data have been taken in the second work incorporated in this dissertation via data

augmentations and a multiscale architecture, encoding such invariances directly as an

inductive bias further increases reliability and theoretical guarantees.

Another limitation of the methods discussed in this dissertation is that fundamental

assumptions to create ground truth distances are required since it is difficult to describe

and formalize a desired similarity measure without already having a metric. Here, the

assumption is that distances for the training data increase strictly monotonic with more

substantial perturbations or spatiotemporal offsets. While this assumption can hold

across many systems, it does not apply to certain classes and parameters, such as temporal

offsets in a periodic vortex shedding flow behind a cylinder or similar oscillatory systems.

The effects of using data from such problems for training are reasonably small when

randomly sampling initial conditions and choosing limited perturbation magnitudes.

Nevertheless, determining a suitable assumption to create distances for oscillatory cases

or finding more general ground truth similarities that require no assumptions remain

open problems.

Finally, different network architectures for metric learning have emerged recently in the

image domain. Most notably, hybrid approaches between CNNs that learn mostly local

features and transformers that learn global interactions and relationships have shown

promising results (Golestaneh et al. 2022; Lao et al. 2022). Similar architectures are also

worth investigating in the domain of PDE data in the future.

Domain Limitations While the proposed methods already investigate a broad range

of transport and motion-based PDEs, adding further PDEs, simulation setups, perturbed

parameters, perturbation amounts, and analyzed simulation fields can help to improve the

robustness and generalization properties of the resulting metrics. While straightforward,

such changes require substantial human intuition and additional tuning during the pro-

posed semi-automatic data generation processes. As discussed above, fully unsupervised
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representation learning techniques or methods requiring only small amounts of accurately

calibrated data can make learned metrics more feasible on substantially larger scales.

An orthogonal direction is a deeper investigation of similarity assessments for individual

PDEs or specific problem formulations. Examples include analyzing highly turbulent

DNS simulations (Lin et al. 1998), metrics for particle-based simulations (Ummenhofer

et al. 2020), or the similarity assessment of liquid surfaces (Um et al. 2017). Such

specialized metrics can better consider prior, domain-specific knowledge to compute

context-dependent similarities. For instance, they allow for controlling whether the

metric should focus on localized phenomena such as turbulence dissipation or global

phenomena like advection-diffusion problems and how the handling of boundary conditions

or obstacles are reflected in the final distance.

As a final domain limitation, the proposed metrics are intended as instance comparisons,

i.e., they predict distances given two flow fields, typically a predicted field and a known

solution. Such comparisons are not very meaningful for generative tasks as generative

models should create new samples following the training data distribution, not simply

recreate individual samples. This is also an issue for chaotic systems when comparing

trajectories beyond the chaotic timescale. One example of such systems is the highly

chaotic Kuramoto–Sivashinsky equation (Sivashinsky 1977; Kuramoto 1978) where pre-

dictions quickly become decorrelated from a reference trajectory, and thus instance-wise

comparison are not ideal. Instead, distributional metrics that statically compare if a

distribution of generated samples or trajectories matches the target distribution are more

suitable in such cases. Distributional comparisons are especially relevant to the recently

emerging diffusion models that also find application in the fluid domain, e.g., for the

probabilistic prediction of fluid flows (Cachay et al. 2023; Kohl et al. 2024). The most

promising direction to achieve this is the combination of the proposed metrics with an

established distribution similarity measure like the Kullback–Leibler divergence or a

Wasserstein distance, similar as done by Salimans et al. (2016) and Heusel et al. (2017)

for their inception score or FID. First steps towards such distributional comparisons

of turbulent flows were taken by Lienen et al. (2023), who utilize an approach based

on the 2-Wasserstein metric to compare a target data distribution to a distribution of

probabilistic predictions. Their work uses a handcrafted underlying distance function

to compare individual flows. It employs turbulence-specific point statistics of velocity

and vorticity inside regions of similar flow behavior, which are determined via clustering.

Future research can also target deep learning approaches to directly learn a distributional

metric for PDE data. However, finding suitable training data and learning setups for

this purpose remains an open problem.
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Data Modality Limitations Both proposed methods are restrictive regarding the data

modality due to the underlying CNN-based feature extractor architecture that prescribes

a relatively rigid data dimensionality. Ideally, universal metrics for simulations should be

able to handle data with an arbitrary number of spatial dimensions without relying on

individual sub-models or simply resorting to slice-wise independent evaluations. While

the VolSiM metric from the second discussed work was shown to be robust to input scale

operations due to its fully convolutional multiscale architecture, this only holds within

a limited range. When the spatial dimensions become very small, the downsampling

operations prevent the computation of low-level features. Similarly, an enormous spatial

scale can substantially reduce the effective receptive field of the network.

Furthermore, another modality limitation is the lack of support for time-dependent data.

Analyzing complete temporal trajectories instead of individual snapshots is a widespread

problem for unsteady phenomena; for example, for tasks like fluid flow prediction (Li et al.

2021; Geneva and Zabaras 2022; Stachenfeld et al. 2022; Kohl et al. 2024) or temporally

coherent super-resolution of flows (Xie et al. 2018). Sliced temporal evaluations are

possible with the proposed methods, yet they ignore temporal correlations and patterns,

leading to similar issues as outlined for element-wise metrics in the spatial domain. First

steps towards temporal metrics have been taken in the work from Gilpin (2021), where

correlations between different forecast evaluation metrics and mathematical properties

of physical systems are investigated. An extension of the proposed methods to time

sequences can also be tackled with temporal convolution operations when suitable ground

truth distances are utilized. Such operations have been applied to modeling temporal

dynamics for flow prediction in work from R. Wang et al. (2020).

Finally and most importantly, the chosen CNN-based methodology eliminates a range

of relevant, commonly used data discretizations across CFD or computer graphics

applications: Particle-based simulations, irregular meshes, or fully unstructured domains

cannot be evaluated directly (which are used in works from, e.g., de Avila Belbute-

Peres et al. 2020; Ummenhofer et al. 2020; Pfaff et al. 2021). While it is possible to

interpolate quantities to a regular grid for evaluation purposes, this introduces additional

interpolation errors. In addition, it might require an enormous spatial grid resolution to

accurately resolve all frequencies present in non-uniform data discretizations.

Explainability Explainability is a critical aspect of similarity assessment and deep

learning approaches in general. Trained neural networks often act as black boxes and

expose little insights regarding their inner workings to the user. This is also true for

both methods investigated in this dissertation. While they adhere to the mathematical

properties of pseudometrics as a theoretical grounding, further indications of how the

37



5 OUTLOOK

computed similarity scores are tied to the characteristics of the input pair are required.

For example, it needs to be clarified which flow features of the data contribute in what

manner to a low or high resulting distance. Potential directions to improve explainability

include saliency maps (Simonyan et al. 2014), feature visualizations (Zeiler and Fergus

2014), or evaluation modes that report spatial distances instead of scalars (Zhang et al.

2018). Furthermore, analyzing if the resulting distances match perceptual evaluations of

domain experts for some low-dimensional example scenarios can increase users’ trust in

deep learning-based metrics.

Explainable similarities are especially significant when applying learned metrics as

differentiable loss functions. The lack of theoretical guarantees for outliers far from the

training domain can be problematic in this context. As shown in Section 4.2, using

high proportions of learned loss function components compared to element-wise losses

can lead to performance deterioration. Training solely with a learned metric as the

objective function even leads to training instability or models that do not substantially

improve during training. This behavior is mainly caused by the optimization process

of the downstream task getting stuck in the highly complex optimization landscape

or finding loopholes in the metric definition. In the latter case, the optimizer reaches

deteriorated solutions that result in low distances but do not solve the task in an intended

way, i.e., there is a mismatch between the intended objective and the metric chosen in

the loss function. Tackling such issues of metrics can reduce the required amount of

parameter tuning when training with a conjunction of learned and element-wise loss terms

or even eliminate the need for element-wise losses in the first place. Furthermore, training

surrogate simulators exclusively with losses based on deep metrics can allow long training

rollouts beyond a system’s chaotic timescale, where element-wise loss formulations become

problematic.

The limitations above resulting from training with deep metrics are also related to

adversarial attacks (Goodfellow et al. 2015). Such attacks target the creation of input

data with imperceptible perturbations specifically designed to fool a model into making

incorrect predictions. Recent research in the image domain suggests that learned metrics

can be highly susceptible to such attacks (Ghildyal and Liu 2023). Random transformation

ensembles were proposed as possible techniques to mitigate this susceptibility (Kettunen

et al. 2019). While adversarial attacks for PDE simulations are less crucial than in vision

applications, achieving robust metrics is a relevant aspect for future work, nevertheless.

A similar direction targets a better understanding of learned metrics, as some unintuitive

behaviors are not yet well understood. Zhang et al. (2018) report that random, untrained

networks work surprisingly well as similarity metrics and the first work incorporated in

this dissertation confirms this finding. Furthermore, Kumar et al. (2022) investigated the
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relation between classification accuracy on ImageNet and performance as a metric via

perceptual scores. The authors conclude that there is an inverse relationship between

classification accuracy and perceptual scores in the medium to high-accuracy domain. This

result indicates that progress on network architectures from established other domains

might not translate well to learned deep metrics. Another unexpected finding was reported

in work from Ding et al. (2022), who report that image metrics are overly sensitive when

faced with resampled texture perturbations not encountered during training that are

easily recognized to be similar by human evaluators. This can potentially be a widespread

issue in the image domain, where it is common to train supervised metrics exclusively with

a set of image perturbations stemming from a post-process. Similar problems can occur

for the proposed metrics in this dissertation, as the training approach with perturbations

does introduce a substantial bias that could have unexpected consequences.

Finally, another aspect highly relevant to explainability is uncertainty prediction. While

generative architectures like GANs or VAEs allow for probabilistic sampling, explicit

uncertainty predictions are commonly modeled via Bayesian neural networks (BNNs).

BNNs are typically based on dropout layers that are active during inference (Srivastava et

al. 2014) or on variational techniques (Blundell et al. 2015; Kingma et al. 2015). Kendall

and Gal (2017) describe two types of uncertainty: aleatoric uncertainty inherent to the

problem or the observations and epistemic uncertainty, which accounts for uncertainty

in the model due to limited data. Creating similarity measures that predict both types

of uncertainty is highly valuable. They allow for making statements about the quality

of individual similarity assessments or can be used to prevent issues when employing

learned metrics as loss functions in downstream optimization tasks. However, accurate

uncertainty predictions for neural networks are still an open research question since such

uncertainties are challenging to validate. First steps towards uncertainty-aware metrics

in the image domain were taken by Prashnani et al. (2018) and Talebi and Milanfar

(2018b) by learning similarity distributions for images created via many visual evaluations

collected from human evaluators.
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6 Conclusion

As illustrated above, the similarity assessment of data from numerical PDE simulations

is a complex but highly relevant domain of ongoing research. Element-wise metrics

cannot assess commonly occurring larger, structural changes in a semantically meaningful

manner but remain the established evaluation criteria of choice across domains due to a

lack of better alternatives. In this dissertation, different deep learning techniques were

proposed, contextualized, and evaluated to compute such structure-aware metrics for data

from PDEs. Furthermore, potential applications as accuracy evaluators or differentiable

loss functions in the context of turbulent flow prediction were highlighted.

Meaningful and robust evaluation criteria are crucial as the overlap domain between

machine learning and PDE simulations continues to evolve rapidly. Nevertheless, com-

paratively little research has been dedicated to analyzing the similarity of simulation

data. The results presented in this dissertation demonstrate the importance of developing

suitable evaluation methods alongside the simulation techniques themselves. We hope

the introduced methodologies can provide insights and serve as starting points for future

research on deep learning-based evaluation metrics for PDEs.

40



7 Summary of Publications

A Learning Similarity Metrics for Numerical Simulations

Abstract We propose a neural network-based approach that computes a stable and

generalizing metric (LSiM ) to compare data from a variety of numerical simulation

sources. We focus on scalar time-dependent 2D data that commonly arises from motion

and transport-based partial differential equations (PDEs). Our method employs a

Siamese network architecture that is motivated by the mathematical properties of a

metric. We leverage a controllable data generation setup with PDE solvers to create

increasingly different outputs from a reference simulation in a controlled environment. A

central component of our learned metric is a specialized loss function that introduces

knowledge about the correlation between single data samples into the training process.

To demonstrate that the proposed approach outperforms existing metrics for vector

spaces and other learned, image-based metrics, we evaluate the different methods on a

large range of test data. Additionally, we analyze generalization benefits of an adjustable

training data difficulty and demonstrate the robustness of LSiM via an evaluation on

three real-world data sets.

Author Contributions Georg Kohl contributed to the idea of the paper and was

responsible for data acquisition, implementation of experiments, and evaluations. Kiwon

Um provided feedback and conceptual insights and helped with user study evaluations

during the development phase. Nils Thuerey guided the research project conceptually

and contributed to high-level design decisions. The paper was written by Georg Kohl

with substantial revisions and improvements from Kiwon Um and Nils Thuerey.

Copyright © 2020, The authors. No copyright was transferred to the publisher during

the publication of this work, as detailed in the permission letter on Page 88. The included

reprint of the paper is identical to the version from Kohl et al. (2020) published in

the Proceedings of Machine Learning Research (PMLR). Permission for reprinting was

obtained from Kiwon Um and Nils Thuerey.
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B Learning Similarity Metrics for Volumetric Simulations

with Multiscale CNNs

Abstract Simulations that produce three-dimensional data are ubiquitous in science,

ranging from fluid flows to plasma physics. We propose a similarity model based on

entropy, which allows for the creation of physically meaningful ground truth distances

for the similarity assessment of scalar and vectorial data, produced from transport and

motion-based simulations. Utilizing two data acquisition methods derived from this model,

we create collections of fields from numerical PDE solvers and existing simulation data

repositories. Furthermore, a multiscale CNN architecture that computes a volumetric

similarity metric (VolSiM ) is proposed. To the best of our knowledge this is the first

learning method inherently designed to address the challenges arising for the similarity

assessment of high-dimensional simulation data. Additionally, the tradeoff between

a large batch size and an accurate correlation computation for correlation-based loss

functions is investigated, and the metric’s invariance with respect to rotation and scale

operations is analyzed. Finally, the robustness and generalization of VolSiM is evaluated

on a large range of test data, as well as a particularly challenging turbulence case study,

that is close to potential real-world applications. (Kohl et al. 2023)

Author Contributions Georg Kohl was responsible for substantial parts of the idea for

the paper and worked on the data generation, running the experiments, and implementing

evaluations. Li-Wei Chen provided general feedback, contributed to the ground truth

similarity model, and helped design some evaluations. Nils Thuerey guided the overall

project direction and the conceptual design of experiments and evaluations. The paper

was written by Georg Kohl, with minor revisions from Li-Wei Chen and substantial

improvements from Nils Thuerey.

Copyright © 2023, Association for the Advancement of Artificial Intelligence (AAAI).

Permission for the noncommercial reuse of all or portions of the above paper in other works

of their own authorship is explicitly granted to the authors, as specified in the returned

rights section of the permission letter on Page 108. The content of the included paper

reprint is identical to the version from Kohl et al. (2023) published by AAAI Publications.

Permission for reprinting was obtained from Li-Wei Chen and Nils Thuerey.
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Learning Similarity Metrics for Numerical Simulations
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Abstract
We propose a neural network-based approach
that computes a stable and generalizing metric
(LSiM) to compare data from a variety of nu-
merical simulation sources. We focus on scalar
time-dependent 2D data that commonly arises
from motion and transport-based partial differen-
tial equations (PDEs). Our method employs a
Siamese network architecture that is motivated
by the mathematical properties of a metric. We
leverage a controllable data generation setup with
PDE solvers to create increasingly different out-
puts from a reference simulation in a controlled
environment. A central component of our learned
metric is a specialized loss function that intro-
duces knowledge about the correlation between
single data samples into the training process. To
demonstrate that the proposed approach outper-
forms existing metrics for vector spaces and other
learned, image-based metrics, we evaluate the dif-
ferent methods on a large range of test data. Addi-
tionally, we analyze generalization benefits of an
adjustable training data difficulty and demonstrate
the robustness of LSiM via an evaluation on three
real-world data sets.

1. Introduction
Evaluating computational tasks for complex data sets is a
fundamental problem in all computational disciplines. Reg-
ular vector space metrics, such as the L2 distance, were
shown to be very unreliable (Wang et al., 2004; Zhang et al.,
2018), and the advent of deep learning techniques with con-
volutional neural networks (CNNs) made it possible to more
reliably evaluate complex data domains such as natural im-
ages, texts (Benajiba et al., 2018), or speech (Wang et al.,
2018). Our central aim is to demonstrate the usefulness of
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Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
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CNN-based evaluations in the context of numerical simula-
tions. These simulations are the basis for a wide range of
applications ranging from blood flow simulations to aircraft
design. Specifically, we propose a novel learned simulation
metric (LSiM) that allows for a reliable similarity evaluation
of simulation data.

Potential applications of such a metric arise in all areas
where numerical simulations are performed or similar data
is gathered from observations. For example, accurate evalua-
tions of existing and new simulation methods with respect to
a known ground truth solution (Oberkampf et al., 2004) can
be performed more reliably than with a regular vector norm.
Another good example is weather data for which complex
transport processes and chemical reactions make in-place
comparisons with common metrics unreliable (Jolliffe &
Stephenson, 2012). Likewise, the long-standing, open ques-
tions of turbulence (Moin & Mahesh, 1998; Lin et al., 1998)
can benefit from improved methods for measuring the simi-
larity and differences in data sets and observations.

In this work, we focus on field data, i.e., dense grids of
scalar values, similar to images, which were generated with
known partial differential equations (PDEs) in order to en-
sure the availability of ground truth solutions. While we
focus on 2D data in the following to make comparisons with
existing techniques from imaging applications possible, our
approach naturally extends to higher dimensions. Every
sample of this 2D data can be regarded a high dimensional
vector, so metrics on the corresponding vector space are
applicable to evaluate similarities. These metrics, in the
following denoted as shallow metrics, are typically simple,
element-wise functions such as L1 or L2 distances. Their
inherent problem is that they cannot compare structures on
different scales or contextual information.

Many practical problems require solutions over time and
need a vast number of non-linear operations that often re-
sult in substantial changes of the solutions even for small
changes of the inputs. Hence, despite being based on
known, continuous formulations, these systems can be seen
as chaotic. We illustrate this behavior in Fig. 1, where two
smoke flows are compared to a reference simulation. A
single simulation parameter was varied for these examples,
and a visual inspection shows that smoke plume (a) is more
similar to the reference. This matches the data generation
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Figure 1. Example of field data from a fluid simulation of hot smoke with normalized distances for different metrics. Our method (LSiM,
green) approximates the ground truth distances (GT, gray) determined by the data generation method best, i.e., version (a) is closer to the
ground truth data than (b). An L2 metric (red) erroneously yields a reversed ordering.

process: version (a) has a significantly smaller parameter
change than (b) as shown in the inset graph on the right.
LSiM robustly predicts the ground truth distances while the
L2 metric labels plume (b) as more similar. In our work, we
focus on retrieving the relative distances of simulated data
sets. Thus, we do not aim for retrieving the absolute param-
eter change but a relative distance that preserves ordering
with respect to this parameter.

Using existing image metrics based on CNNs for this prob-
lem is not optimal either: natural images only cover a small
fraction of the space of possible 2D data, and numerical
simulation outputs are located in a fundamentally different
data manifold within this space. Hence, there are crucial
aspects that cannot be captured by purely learning from
photographs. Furthermore, we have full control over the
data generation process for simulation data. As a result, we
can create arbitrary amounts of training data with gradual
changes and a ground truth ordering. With this data, we can
learn a metric that is not only able to directly extract and use
features but also encodes interactions between them. The
central contributions of our work are as follows:

• We propose a Siamese network architecture with fea-
ture map normalization, which is able to learn a metric
that generalizes well to unseen motion and transport-
based simulation methods.

• We propose a novel loss function that combines a cor-
relation loss term with a mean squared error to improve
the accuracy of the learned metric.

• In addition, we show how a data generation approach
for numerical simulations can be employed to train
networks with general and robust feature extractors for
metric calculations.

Our source code, data sets, and final model are available at
https://github.com/tum-pbs/LSIM.

2. Related Work
One of the earliest methods to go beyond using simple met-
rics based on Lp norms for natural images was the structural

similarity index (Wang et al., 2004). Despite improvements,
this method can still be considered a shallow metric. Over
the years, multiple large databases for human evaluations of
natural images were presented, for instance, CSIQ (Larson
& Chandler, 2010), TID2013 (Ponomarenko et al., 2015),
and CID:IQ (Liu et al., 2014). With this data and the discov-
ery that CNNs can create very powerful feature extractors
that are able to recognize patterns and structures, deep fea-
ture maps quickly became established as means for evalua-
tion (Amirshahi et al., 2016; Berardino et al., 2017; Bosse
et al., 2016; Kang et al., 2014; Kim & Lee, 2017). Recently,
these methods were improved by predicting the distribution
of human evaluations instead of directly learning distance
values (Prashnani et al., 2018; Talebi & Milanfar, 2018b).
Zhang et al. compared different architecture and levels of
supervision, and showed that metrics can be interpreted as a
transfer learning approach by applying a linear weighting
to the feature maps of any network architecture to form the
image metric LPIPS v0.1. Typical use cases of these image-
based CNN metrics are computer vision tasks such as detail
enhancement (Talebi & Milanfar, 2018a), style transfer, and
super-resolution (Johnson et al., 2016). Generative adver-
sarial networks also leverage CNN-based losses by training
a discriminator network in parallel to the generation task
(Dosovitskiy & Brox, 2016).

Siamese network architectures are known to work well for a
variety of comparison tasks such as audio (Zhang & Duan,
2017), satellite images (He et al., 2019), or the similarity of
interior product designs (Bell & Bala, 2015). Furthermore,
they yield robust object trackers (Bertinetto et al., 2016),
algorithms for image patch matching (Hanif, 2019), and for
descriptors for fluid flow synthesis (Chu & Thuerey, 2017).
Inspired by these studies, we use a similar Siamese neural
network architecture for our metric learning task. In contrast
to other work on self-supervised learning that utilizes spatial
or temporal changes to learn meaningful representations
(Agrawal et al., 2015; Wang & Gupta, 2015), our method
does not rely on tracked keypoints in the data.

While correlation terms have been used for learning joint
representations by maximizing correlation of projected
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views (Chandar et al., 2016) and are popular for style trans-
fer applications via the Gram matrix (Ruder et al., 2016),
they were not used for learning distance metrics. As we
demonstrate below, they can yield significant improvements
in terms of the inferred distances.

Similarity metrics for numerical simulations are a topic of
ongoing investigation. A variety of specialized metrics have
been proposed to overcome the limitations of Lp norms,
such as the displacement and amplitude score from the area
of weather forecasting (Keil & Craig, 2009) as well as per-
mutation based metrics for energy consumption forecasting
(Haben et al., 2014). Turbulent flows, on the other hand, are
often evaluated in terms of aggregated frequency spectra
(Pitsch, 2006). Crowd-sourced evaluations based on the
human visual system were also proposed to evaluate simula-
tion methods for physics-based animation (Um et al., 2017)
and for comparing non-oscillatory discretization schemes
(Um et al., 2019). These results indicate that visual evalua-
tions in the context of field data are possible and robust, but
they require extensive (and potentially expensive) user stud-
ies. Additionally, our method naturally extends to higher
dimensions, while human evaluations inherently rely on pro-
jections with at most two spatial and one time dimension.

3. Constructing a CNN-based Metric
In the following, we explain our considerations when em-
ploying CNNs as evaluation metrics. For a comparison that
corresponds to our intuitive understanding of distances, an
underlying metric has to obey certain criteria. More pre-
cisely, a function m : I× I→ [0,∞) is a metric on its input
space I if it satisfies the following properties ∀x,y, z ∈ I:

m(x,y) ≥ 0 non-negativity (1)
m(x,y) = m(y,x) symmetry (2)
m(x,y) ≤ m(x, z) +m(z,y) triangle ineq. (3)
m(x,y) = 0 ⇐⇒ x = y identity of indisc. (4)

The properties (1) and (2) are crucial as distances should be
symmetric and have a clear lower bound. Eq. (3) ensures

that direct distances cannot be longer than a detour. Property
(4), on the other hand, is not really useful for discrete opera-
tions as approximation errors and floating point operations
can easily lead to a distance of zero for slightly different
inputs. Hence, we focus on a relaxed, more meaningful
definition m(x,x) = 0 ∀x ∈ I, which leads to a so-called
pseudometric. It allows for a distance of zero for different
inputs but has to be able to spot identical inputs.

We realize these requirements for a pseudometric with an
architecture that follows popular perceptual metrics such
as LPIPS: The activations of a CNN are compared in latent
space, accumulated with a set of weights, and the resulting
per-feature distances are aggregated to produce a final dis-
tance value. Fig. 2 gives a visual overview of this process.

To show that the proposed Siamese architecture by construc-
tion qualifies as a pseudometric, the function

m(x,y) = m2(m1(x),m1(y))

computed by our network is split into two parts: m1 : I→ L
to compute the latent space embeddings x̃ = m1(x), ỹ =
m1(y) from each input, and m2 : L→ [0,∞) to compare
these points in the latent space L. We chose operations
for m2 such that it forms a metric ∀x̃, ỹ ∈ L. Since m1

always maps to L, this means m has the properties (1),
(2), and (3) on I for any possible mapping m1, i.e., only a
metric on L is required. To achieve property (4), m1 would
need to be injective, but the compression of typical feature
extractors precludes this. However, if m1 is deterministic
m(x,x) = 0 ∀x ∈ I is still fulfilled since identical inputs
result in the same point in latent space and thus a distance
of zero. More details for this proof can be found in App. A.

3.1. Base Network

The sole purpose of the base network (Fig. 2, in purple) is to
extract feature maps from both inputs. The Siamese architec-
ture implies that the weights of the base network are shared
for both inputs, meaning all feature maps are comparable.
We experimented with the feature extracting layers from var-

Base
network

Input 1

Input 2 Base
network

Feature map
normalization

Feature map
normalization

Elementwise
latent space
difference

Channel aggr.:
weighted avg.

Spatial aggr.:
average

Layer aggr.:
summation

Distance
output

1 Learned weight 
per feature map

RGB inputs Feature maps:
sets of 3rd order tensors 

Difference maps:
set of 3rd order tensors

Average maps:
set of 2nd order tensors 

Layer distances:
set of scalars

d1 d2 d3 d
Result:
scalar

Figure 2. Overview of the proposed distance computation for a simplified base network that contains three layers with four feature maps
each in this example. The output shape for every operation is illustrated below the transitions in orange and white. Bold operations are
learned, i.e., contain weights influenced by the training process.
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ious CNN architectures, such as AlexNet (Krizhevsky et al.,
2017), VGG (Simonyan & Zisserman, 2015), SqueezeNet
(Iandola et al., 2016), and a fluid flow prediction network
(Thuerey et al., 2018). We considered three variants of these
networks: using the original pre-trained weights, fine-tuning
them, or re-training the full networks from scratch. In con-
trast to typical CNN tasks where only the result of the final
output layer is further processed, we make use of the full
range of extracted features across the layers of a CNN (see
Fig. 2). This implies a slightly different goal compared
to regular training: while early features should be general
enough to allow for extracting more complex features in
deeper layers, this is not their sole purpose. Rather, features
in earlier layers of the network can directly participate in
the final distance calculation and can yield important cues.

We achieved the best performance for our data sets using a
base network architecture with five layers, similar to a re-
duced AlexNet, that was trained from scratch (see App. B.1).
This feature extractor is fully convolutional and thus allows
for varying spatial input dimensions, but for comparability
to other models we keep the input size constant at 224×224
for our evaluation. In separate tests with interpolated inputs,
we found that the metric still works well for scaling factors
in the range [0.5, 2].

3.2. Feature Map Normalization

The goal of normalizing the feature maps (Fig. 2, in red) is
to transform the extracted features of each layer, which typi-
cally have very different orders of magnitude, into compara-
ble ranges. While this task could potentially be performed
by the learned weights, we found the normalization to yield
improved performance in general.

Let G denote a 4th order feature tensor with dimensions
(gb, gc, gx, gy) from one layer of the base network. We form
a series G0,G1, . . . for every possible content of this tensor
across our training samples. The normalization only hap-
pens in the channel dimension, so all following operations
accumulate values along the dimension of gc while keeping
gb, gx, and gy constant, i.e., are applied independently of the
batch and spatial dimensions. The unit length normalization
proposed by Zhang et al., i.e.,

normunit(G) = G / ‖G‖2 ,

only considers the current sample. In this case, ‖G‖2 is
a 3rd order tensor with the Euclidean norms of G along
the channel dimension. Effectively, this results in a cosine
distance, which only measures angles of the latent space
vectors. To consider the vector magnitude, the most basic
idea is to use the maximum norm of other training samples,
and this leads to a global unit length normalization

normglobal(G) = G /max (‖G0‖2 , ‖G1‖2 , . . . ) .

Now, the magnitude of the current sample can be compared
to other feature vectors, but this is not robust since the largest
feature vector could be an outlier with respect to the typical
content. Instead, we individually transform each component
of a feature vector with dimension gc to a standard normal
distribution. This is realized by subtracting the mean and
dividing by the standard deviation of all features element-
wise along the channel dimension as follows:

normdist(G) =
1√
gc − 1

G−mean (G0,G1, . . . )

std (G0,G1, . . . )
.

These statistics are computed via a preprocessing step over
the training data and stay fixed during training, as we did not
observe significant improvements with more complicated
schedules such as keeping a running mean. The magnitude
of the resulting normalized vectors follows a chi distribution
with k = gc degrees of freedom, but computing its mean√

2 Γ((k + 1)/2) / Γ(k/2) is expensive1, especially for
larger k. Instead, the mode of the chi distribution

√
gc − 1

that closely approximates its mean is employed to achieve a
consistent average magnitude of about one independently of
gc. As a result, we can measure angles for the latent space
vectors and compare their magnitude in the global length
distribution across all layers.

3.3. Latent Space Differences

Computing the difference of two latent space representations
x̃, ỹ ∈ L that consist of all extracted features from the two
inputs x,y ∈ I lies at the core of the metric. This difference
operator in combination with the following aggregations has
to ensure that the metric properties above are upheld with
respect to L. Thus, the most obvious approach to employ an
element-wise difference x̃i− ỹi ∀i ∈ {0, 1, . . . , dim(L)} is
not suitable, as it invalidates non-negativity and symmetry.
Instead, exponentiation of an absolute difference via |x̃i −
ỹi|p yields an Lp metric on L, when combined with the
correct aggregation and a pth root. |x̃i − ỹi|2 is used to
compute the difference maps (Fig. 2, in yellow), as we did
not observe significant differences for other values of p.

Considering the importance of comparing the extracted fea-
tures, this simple feature difference does not seem optimal.
Rather, one can imagine that improvements in terms of com-
paring one set of feature activations could lead to overall
improvements for derived metrics. We investigated replac-
ing these operations with a pre-trained CNN-based metric
for each feature map. This creates a recursive process or
“meta-metric” that reformulates the initial problem of learn-
ing input similarities in terms of learning feature space sim-
ilarities. However, as detailed in App. B.3, we did not find
any substantial improvements with this recursive approach.
This implies that once a large enough number of expressive

1Γ denotes the gamma function for factorials
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features is available for comparison, the in-place difference
of each feature is sufficient to compare two inputs.

3.4. Aggregations

The subsequent aggregation operations (Fig. 2, in green) are
applied to the difference maps to compress the contained
per feature differences along the different dimensions into a
single distance value. A simple summation in combination
with an absolute difference |x̃i − ỹi| above leads to an L1

distance on the latent space L. Similarly, we can show that
average or learned weighted average operations are applica-
ble too (see App. A). In addition, using a p-th power for the
latent space difference requires a corresponding root opera-
tion after all aggregations, to ensure the metric properties
with respect to L.

To aggregate the difference maps along the channel dimen-
sion, we found the weighted average proposed by Zhang
et al. to work very well. Thus, we use one learnable weight
to control the importance of a feature. The weight is a
multiplier for the corresponding difference map before sum-
mation along the channel dimension, and is clamped to be
non-negative. A negative weight would mean that a larger
difference in this feature produces a smaller overall distance,
which is not helpful. For regularization, the learned ag-
gregation weights utilize dropout during training, i.e., are
randomly set to zero with a probability of 50%. This ensures
that the network cannot rely on single features only, but has
to consider multiple features for a more stable evaluation.

For spatial and layer aggregation, functions such as a sum-
mation or averaging are sufficient and generally interchange-
able. We experimented with more intricate aggregation func-
tions, e.g., by learning a spatial average or determining layer
importance weights dynamically from the inputs. When the
base network is fixed and the metric only has very few train-
able weights, this did improve the overall performance. But,
with a fully trained base network, the feature extraction
seems to automatically adopt these aspects making a more
complicated aggregation unnecessary.

4. Data Generation and Training
Similarity data sets for natural images typically rely on
changing already existing images with distortions, noise,
or other operations and assigning ground truth distances
according to the strength of the operation. Since we can
control the data creation process for numerical simulations
directly, we can generate large amounts of simulation data
with increasing dissimilarities by altering the parameters
used for the simulations. As a result, the data contains more
information about the nature of the problem, i.e., which
changes of the data distribution should lead to increased
distances, than by applying modifications as a post-process.

4.1. Data Generation

Given a set of model equations, e.g., a PDE from fluid dy-
namics, typical solution methods consist of a solver that,
given a set of boundary conditions, computes discrete ap-
proximations of the necessary differential operators. The
discretized operators and the boundary conditions typically
contain problem dependent parameters, which we collec-
tively denote with p0, p1, . . . , pi, . . . in the following. We
only consider time dependent problems, and our solvers
start with initial conditions at t0 to compute a series of time
steps t1, t2, . . . until a target point in time (tt) is reached.
At that point, we obtain a reference output field o0 from one
of the PDE variables, e.g., a velocity.

Initial conditions OutputFinite difference solver with time discretization
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Figure 3. General data generation method from a PDE solver for
a time dependent problem. With increasing changes of the initial
conditions for a parameter pi in ∆i increments, the outputs de-
crease in similarity. Controlled Gaussian noise is injected in a
simulation field of the solver. The difficulty of the learning task
can be controlled by scaling ∆i as well as the noise variance v.

For data generation, we incrementally change a single pa-
rameter pi in n steps ∆i, 2 ·∆i, . . . , n ·∆i to create a series
of n outputs o1, o2, . . . , on. We consider a series obtained
in this way to be increasingly different from o0. To create
natural variations of the resulting data distributions, we add
Gaussian noise fields with zero mean and adjustable vari-
ance v to an appropriate simulation field such as a velocity.
This noise allows us to generate a large number of varied
data samples for a single simulation parameter pi. Further-
more, v serves as an additional parameter that can be varied
in isolation to observe the same simulation with different
levels of interference. This is similar in nature to numerical
errors introduced by discretization schemes. These pertur-
bations enlarge the space covered by the training data, and
we found that training networks with suitable noise levels
improves robustness as we will demonstrate below. The
process for data generation is summarized in Fig. 3.

As PDEs can model extremely complex and chaotic be-
haviour, there is no guarantee that the outputs always ex-
hibit increasing dissimilarity with the increasing parameter
change. This behaviour is what makes the task of similar-
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ity assessment so challenging. Even if the solutions are
essentially chaotic, their behaviour is not arbitrary but rather
governed by the rules of the underlying PDE. For our data
set, we choose the following range of representative PDEs:
We include a pure Advection-Diffusion model (AD), and
Burger’s equation (BE) which introduces an additional vis-
cosity term. Furthermore, we use the full Navier-Stokes
equations (NSE), which introduce a conservation of mass
constraint. When combined with a deterministic solver and
a suitable parameter step size, all these PDEs exhibit chaotic
behaviour at small scales, and the medium to large scale
characteristics of the solutions shift smoothly with increas-
ing changes of the parameters pi.

The noise amplifies the chaotic behaviour to larger scales
and provides a controlled amount of perturbations for the
data generation. This lets the network learn about the nature
of the chaotic behaviour of PDEs without overwhelming it
with data where patterns are not observable anymore. The
latter can easily happen when ∆i or v grow too large and
produce essentially random outputs. Instead, we specifically
target solutions that are difficult to evaluate in terms of a
shallow metric. We heuristically select the smallest v and a
suitable ∆i such that the ordering of several random output
samples with respect to their L2 difference drops below a
correlation value of 0.8. For the chosen PDEs, v was small
enough to avoid deterioration of the physical behaviour
especially due to the diffusion terms, but different means of
adjusting the difficulty may be necessary for other data.

4.2. Training

For training, the 2D scalar fields from the simulations were
augmented with random flips, 90◦ rotations, and cropping
to obtain an input size of 224 × 224 every time they are
used. Identical augmentations were applied to each field of
one given sequence to ensure comparability. Afterwards,
each input sequence is collectively normalized to the range
[0, 255]. To allow for comparisons with image metrics and
provide the possibility to compare color data and full ve-
locity fields during inference, the metric uses three input
channels. During training, the scalar fields are duplicated to
each channel after augmentation. Unless otherwise noted,
networks were trained with a batch size of 1 for 40 epochs
with the Adam optimizer using a learning rate of 10−5. To
evaluate the trained networks on validation and test inputs,
only a bilinear resizing and the normalization step is applied.

5. Correlation Loss Function
The central goal of our networks is to identify relative dif-
ferences of input pairs produced via numerical simulations.
Thus, instead of employing a loss that forces the network
to only infer given labels or distance values, we train our
networks to infer the ordering of a given sequence of simula-

tion outputs o0, o1, . . . , on. We propose to use the Pearson
correlation coefficient (see Pearson, 1920), which yields
a value in [−1, 1] that measures the linear relationship be-
tween two distributions. A value of 1 implies that a linear
equation describes their relationship perfectly. We com-
pute this coefficient for a full series of outputs such that the
network can learn to extract features that arrange this data
series in the correct ordering. Each training sample of our
network consists of every possible pair from the sequence
o0, o1, . . . , on and the corresponding ground truth distance
distribution c ∈ [0, 1]0.5(n+1)n representing the parameter
change from the data generation. For a distance prediction
d ∈ [0,∞)0.5(n+1)n of our network for one sample, we
compute the loss with:

L(c,d) = λ1(c−d)2 +λ2(1− (c− c̄) · (d− d̄)

‖c− c̄‖2
∥∥d− d̄

∥∥
2

) (5)

Here, the mean of a distance vector is denoted by c̄ and
d̄ for ground truth and prediction, respectively. The first
part of the loss is a regular MSE term, which minimizes
the difference between predicted and actual distances. The
second part is the Pearson correlation coefficient, which is
inverted such that the optimization results in a maximization
of the correlation. As this formulation depends on the length
of the input sequence, the two terms are scaled to adjust
their relative influence with λ1 and λ2. For the training, we
chose n = 10 variations for each reference simulation. If
n should vary during training, the influence of both terms
needs to be adjusted accordingly. We found that scaling
both terms to a similar order of magnitude worked best in
our experiments.

0.62 0.64 0.66 0.68 0.70 0.72 0.74
Correlation on all test data

MSE

Cross cor.

Pearson cor.

MSE + 
 cross cor.

Proposed

LSiM (ours)
AlexNetfrozen

Figure 4. Performance comparison on our test data of the proposed
approach (LSiM) and a smaller model (AlexNetfrozen) for different
loss functions on the y-axis.

In Fig. 4, we investigate how the proposed loss function
compares to other commonly used loss formulations for our
full network and a pre-trained network, where only aggre-
gation weights are learned. The performance is measured
via Spearman’s rank correlation of predicted against ground
truth distances on our combined test data sets. This is com-
parable to the All column in Tab. 1 and described in more
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detail in Section 6.2. In addition to our full loss function, we
consider a loss function that replaces the Pearson correlation
with a simpler cross-correlation (c · d) / (‖c‖2 ‖d‖2). We
also include networks trained with only the MSE or only
the correlation terms for each of the two variants.

A simple MSE loss yields the worst performance for both
evaluated models. Using any correlation based loss function
for the AlexNetfrozen metric (see Section 6.2) improves the
results, but there is no major difference due to the limited
number of only 1152 trainable weights. For LSiM, the pro-
posed combination of MSE loss with the Pearson correlation
performs better than using cross-correlation or only isolated
Pearson correlation. Interestingly, combining cross correla-
tion with MSE yields worse results than cross correlation
by itself. This is caused by the cross correlation term influ-
encing absolute distance values, which potentially conflicts
with the MSE term. For our loss, the Pearson correlation
only handles the relative ordering while the MSE deals with
the absolute distances, leading to better inferred distances.

6. Results
In the following, we will discuss how the data generation
approach was employed to create a large range of training
and test data from different PDEs. Afterwards, the proposed
metric is compared to other metrics, and its robustness is
evaluated with several external data sets.

6.1. Data Sets

We created four training (Smo, Liq, Adv and Bur) and two
test data sets (LiqN and AdvD) with ten parameter steps for
each reference simulation. Based on two 2D NSE solvers,
the smoke and liquid simulation training sets (Smo and
Liq) add noise to the velocity field and feature varied initial
conditions such as fluid position or obstacle properties, in
addition to variations of buoyancy and gravity forces. The
two other training sets (Adv and Bur) are based on 1D
solvers for AD and BE, concatenated over time to form a
2D result. In both cases, noise was injected into the velocity
field, and the varied parameters are changes to the field
initialization and forcing functions.

For the test data set, we substantially change the data dis-
tribution by injecting noise into the density instead of the
velocity field for AD simulations to obtain the AdvD data
set and by including background noise for the velocity field
of a liquid simulation (LiqN). In addition, we employed
three more test sets (Sha, Vid, and TID) created without
PDE models to explore the generalization for data far from
our training data setup. We include a shape data set (Sha)
that features multiple randomized moving rigid shapes, a
video data set (Vid) consisting of frames from random
video footage, and TID2013 (Ponomarenko et al., 2015) as
a perceptual image data set (TID). Below, we additionally
list a combined correlation score (All) for all test sets apart
from TID, which is excluded due to its different structure.
Examples for each data set are shown in Fig. 5 and genera-
tion details with further samples can be found in App. D.

6.2. Performance Evaluation

To evaluate the performance of a metric on a data set, we
first compute the distances from each reference simulation
to all corresponding variations. Then, the predicted and
the ground truth distance distributions over all samples are
combined and compared using Spearman’s rank correlation
coefficient (see Spearman, 1904). It is similar to the Pear-
son correlation, but instead it uses ranking variables, i.e.,
measures monotonic relationships of distributions.

The top part of Tab. 1 shows the performance of the shallow
metrics L2 and SSIM as well as the LPIPS metric (Zhang
et al., 2018) for all our data sets. The results clearly show
that shallow metrics are not suitable to compare the samples
in our data set and only rarely achieve good correlation
values. The perceptual LPIPS metric performs better in
general and outperforms our method on the image data sets
Vid and TID. This is not surprising as LPIPS is specifically
trained for such images. For most of the simulation data
sets, however, it performs significantly worse than for the
image content. The last row of Tab. 1 shows the results of
our LSiM model with a very good performance across all
data sets and no negative outliers. Note that although it was
not trained with any natural image content, it still performs
well for the image test sets.

Figure 5. Samples from our data sets. For each subset the reference is on the left, and three variations in equal parameter steps follow.
From left to right and top to bottom: Smo (density, velocity, and pressure), Adv (density), Liq (flags, velocity, and levelset), Bur
(velocity), LiqN (velocity), AdvD (density), Sha and Vid.
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Table 1. Performance comparison of existing metrics (top block), experimental designs (middle block), and variants of the proposed
method (bottom block) on validation and test data sets measured in terms of Spearman’s rank correlation coefficient of ground truth
against predicted distances. Bold+underlined values show the best performing metric for each data set, bold values are within a 0.01
error margin of the best performing, and italic values are 0.2 or more below the best performing. On the right, a visualization of the
combined test data results is shown for selected models.

Metric
Validation data sets Test data sets

Smo Liq Adv Bur TID LiqN AdvD Sha Vid All

L2 0.66 0.80 0.74 0.62 0.82 0.73 0.57 0.58 0.79 0.61
SSIM 0.69 0.73 0.77 0.71 0.77 0.26 0.69 0.46 0.75 0.53
LPIPS v0.1. 0.63 0.68 0.68 0.72 0.86 0.50 0.62 0.84 0.83 0.66

AlexNetrandom 0.63 0.69 0.69 0.66 0.82 0.64 0.65 0.67 0.81 0.65
AlexNetfrozen 0.66 0.70 0.69 0.71 0.85 0.40 0.62 0.87 0.84 0.65
Optical flow 0.62 0.57 0.36 0.37 0.55 0.49 0.28 0.61 0.75 0.48
Non-Siamese 0.77 0.85 0.78 0.74 0.65 0.81 0.64 0.25 0.80 0.60
Skipfrom scratch 0.79 0.83 0.80 0.74 0.85 0.78 0.61 0.78 0.83 0.71

LSiMnoiseless 0.77 0.77 0.76 0.72 0.85 0.62 0.58 0.86 0.82 0.68
LSiMstrong noise 0.65 0.65 0.67 0.69 0.84 0.39 0.54 0.89 0.82 0.64
LSiM (ours) 0.78 0.82 0.79 0.75 0.86 0.79 0.58 0.88 0.81 0.73
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The middle block of Tab. 1 contains several interesting vari-
ants (more details can be found in App. B): AlexNetrandom

and AlexNetfrozen are small models, where the base net-
work is the original AlexNet with pre-trained weights.
AlexNetrandom contains purely random aggregation weights
without training, whereas AlexNetfrozen only has trainable
weights for the channel aggregation and therefore lacks
the flexibility to fully adjust to the data distribution of the
numerical simulations. The random model performs surpris-
ingly well in general, pointing to powers of the underlying
Siamese CNN architecture.

Recognizing that many PDEs include transport phenomena,
we investigated optical flow (Horn & Schunck, 1981) as a
means to compute motion from field data. For the Optical
flow metric, we used FlowNet2 (Ilg et al., 2016) to bidirec-
tionally compute the optical flow field between two inputs
and aggregate it to a single distance value by summing all
flow vector magnitudes. On the data set Vid that is similar
to the training data of FlowNet2, it performs relatively well,
but in most other cases it performs poorly. This shows that
computing a simple warping from one input to the other is
not enough for a stable metric although it seems like an in-
tuitive solution. A more robust metric needs the knowledge
of the underlying features and their changes to generalize
better to new data.

To evaluate whether a Siamese architecture is really ben-
eficial, we used a Non-Siamese architecture that directly
predicts the distance from both stacked inputs. For this
purpose, we employed a modified version of AlexNet that
reduces the weights of the feature extractor by 50% and
of the remaining layers by 90%. As expected, this metric

works great on the validation data but has huge problems
with generalization, especially on TID and Sha. In addi-
tion, even simple metric properties such as symmetry are no
longer guaranteed because this architecture does not have
the inherent constraints of the Siamese setup. Finally, we
experimented with multiple fully trained base networks. As
re-training existing feature extractors only provided small
improvements, we used a custom base network with skip
connections for the Skipfrom scratch metric. Its results already
come close to the proposed approach on most data sets.

The last block in Tab. 1 shows variants of the proposed
approach trained with varied noise levels. This inherently
changes the difficulty of the data. Hence, LSiMnoiseless was
trained with relatively simple data without perturbations,
whereas LSiMstrong noise was trained with strongly varying
data. Both cases decrease the capabilities of the trained
model on some of the validation and test sets. This indicates
that the network needs to see a certain amount of variation
at training time in order to become robust, but overly large
changes hinder the learning of useful features (also see
App. C).

6.3. Evaluation on Real-World Data

To evaluate the generalizing capabilities of our trained met-
ric, we turn to three representative and publicly available
data sets of captured and simulated real-world phenomena,
namely buoyant flows, turbulence, and weather. For the
former, we make use of the ScalarFlow data set (Eckert
et al., 2019), which consists of captured velocities of buoy-
ant scalar transport flows. Additionally, we include velocity
data from the Johns Hopkins Turbulence Database (JHTDB)
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Figure 6. Examples from three real-world data repositories used for evaluation, visualized via color-mapping. Each block features
four different sequences (rows) with frames in equal temporal or spatial intervals. Left: ScalarFlow – captured buoyant volumetric
transport flows using the z-slice (top two) and z-mean (bottom two). Middle: JHTDB – four different turbulent DNS simulations. Right:
WeatherBench – weather data consisting of temperature (top two) and geopotential (bottom two).

(Perlman et al., 2007), which represents direct numerical
simulations of fully developed turbulence. As a third case,
we use scalar temperature and geopotential fields from the
WeatherBench repository (Rasp et al., 2020), which contains
global climate data on a Cartesian latitude-longitude grid of
the earth. Visualizations of this data via color-mapping the
scalar fields or velocity magnitudes are shown in Fig. 6.
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Figure 7. Spearman correlation values for multiple metrics on data
from three repositories. Shown are mean and standard deviation
over different temporal or spatial intervals used to create sequences.

For the results in Fig. 7, we extracted sequences of frames
with fixed temporal and spatial intervals from each data set
to obtain a ground truth ordering. Six different interval spac-
ings for every data source are employed, and all velocity
data is split by component. We then measure how well dif-
ferent metrics recover the original ordering in the presence
of the complex changes of content, driven by the underlying
physical processes. The LSiM model outlined in previous
sections was used for inference without further changes.

Every metric is separately evaluated (see Section 6.2) for
the six interval spacings with 180-240 sequences each. For
ScalarFlow and WeatherBench, the data was additionally
partitioned by z-slice or z-mean and temperature or geopo-

tential respectively, leading to twelve evaluations. Fig. 7
shows the mean and standard deviation of the resulting cor-
relation values. Despite never being trained on any data
from these data sets, LSiM recovers the ordering of all three
cases with consistently high accuracy. It yields averaged
correlations of 0.96 ± 0.02, 0.95 ± 0.05, and 0.95 ± 0.06
for ScalarFlow, JHTDB, and WeatherBench, respectively.
The other metrics show lower means and higher uncertainty.
Further details and results for the individual evaluations can
be found in App. E.

7. Conclusion
We have presented the LSiM metric to reliably and robustly
compare outputs from numerical simulations. Our method
significantly outperforms existing shallow metric functions
and provides better results than other learned metrics. We
demonstrated the usefulness of the correlation loss, showed
the benefits of a controlled data generation environment,
and highlighted the stability of the obtained metric for a
range of real-world data sets.

Our trained LSiM metric has the potential to impact a wide
range of fields, including the fast and reliable accuracy as-
sessment of new simulation methods, robust optimizations
of parameters for reconstructions of observations, and guid-
ing generative models of physical systems. Furthermore, it
will be highly interesting to evaluate other loss functions,
e.g., mutual information (Bachman et al., 2019) or con-
trastive predictive coding (Hénaff et al., 2019), and combi-
nations with evaluations from perceptual studies (Um et al.,
2019). We also plan to evaluate our approach for an even
larger set of PDEs as well as for 3D and 4D data sets. Espe-
cially, turbulent flows are a highly relevant and interesting
area for future work on learned evaluation metrics.
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Appendix: Learning Similarity Metrics for Numerical Simulations

This supplemental document contains an analysis of the
proposed metric design with respect to properties of metrics
in general (App. A) and details to the used network archi-
tectures (App. B). Afterwards, material that deals with the
data sets is provided. It contains examples and failure cases
for each of the data domains and analyzes the impact of
the data difficulty (App. C and D). Next, the evaluation on
real-world data is described in more detail (App. E). Finally,
we explore additional metric evaluations (App. F) and give
an overview on the used notation (App. G).

The source code for using the trained LSiM metric and re-
training the model from scratch are available at https://
github.com/tum-pbs/LSIM. This includes the full
data sets and the corresponding data generation scripts for
the employed PDE solver.

A. Discussion of Metric Properties
To analyze if the proposed method qualifies as a metric, it is
split in two functionsm1 : I→ L andm2 : L×L→ [0,∞),
which operate on the input space I and the latent space L.
Through flattening elements from the input or latent space
into vectors, I ' Ra and L ' Rb where a and b are the
dimensions of the input data and all feature maps respec-
tively, and both values have a similar order of magnitude.
m1 describes the non-linear function computed by the base
network combined with the following normalization and
returns a point in the latent space. m2 uses two points in
the latent space to compute a final distance value, thus it in-
cludes the latent space difference and the aggregation along
the spatial, layer, and channel dimensions. With the Siamese
network architecture, the resulting function for the entire
approach is

m(x,y) = m2(m1(x),m1(y)).

The identity of indiscernibles mainly depends on m1 be-
cause, even if m2 itself guarantees this property, m1 could
still be non-injective, which means it can map different in-
puts to the same point in latent space x̃ = ỹ for x 6= y.
Due to the complicated nature of m1, it is difficult to make
accurate predictions about the injectivity of m1. Each base
network layer of m1 recursively processes the result of the
preceding layer with various feature extracting operations.
Here, the intuition is that significant changes in the input
should produce different feature map results in one or more
layers of the network. As very small changes in the input
lead to zero valued distances predicted by the CNN (i.e., an

identical latent space for different inputs), m1 is in practice
not injective. In an additional experiment, the proposed ar-
chitecture was evaluated on about 3500 random inputs from
all our data sets, where the CNN received one unchanged
and one slightly modified input. The modification consisted
of multiple pixel adjustments by one bit (on 8-bit color im-
ages) in random positions and channels. When adjusting
only a single pixel in the 224× 224 input, the CNN predicts
a zero valued distance on about 23% of the inputs, but we
never observed an input where seven or more changed pixels
resulted in a distance of zero in all experiments.

In this context, the problem of numerical errors is impor-
tant because even two slightly different latent space repre-
sentations could lead to a result that seems to be zero if
the difference vanishes in the aggregation operations or is
smaller than the floating point precision. On the other hand,
an automated analysis to find points that have a different
input but an identical latent space image is a challenging
problem and left as future work.

The evaluation of the base network and the normalization is
deterministic, and hence ∀x : m1(x) = m1(x) holds. Fur-
thermore, we know that m(x,x) = 0 if m2 guarantees that
∀m1(x) : m2(m1(x),m1(x)) = 0. Thus, the remaining
properties, i.e., non-negativity, symmetry, and the triangle
inequality, only depend on m2 since for them the original
inputs are not relevant, but their respective images in the la-
tent space. The resulting structure with a relaxed identity of
indiscernibles is called a pseudometric, where ∀x̃, ỹ, z̃ ∈ L:

m2(x̃, ỹ) ≥ 0 (1)
m2(x̃, ỹ) = m2(ỹ, x̃) (2)
m2(x̃, ỹ) ≤ m2(x̃, z̃) +m2(z̃, ỹ) (3)
m2(x̃, x̃) = 0 (4)

Notice that m2 has to fulfill these properties with respect to
the latent space but not the input space. If m2 is carefully
constructed, the metric properties still apply, independently
of the actual design of the base network or the feature map
normalization.

A first observation concerning m2 is that if all aggregations
were sum operations and the element-wise latent space dif-
ference was the absolute value of a difference operation,
m2 would be equivalent to computing the L1 norm of the
difference vector in latent space:

msum
2 (x̃, ỹ) =

b∑

i=1

|x̃i − ỹi|.
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Similarly, adding a square operation to the element-wise
distance in the latent space and computing the square root
at the very end leads to the L2 norm of the latent space
difference vector. In the same way, it is possible to use any
Lp norm with the corresponding operations:

msum
2 (x̃, ỹ) =

(
b∑

i=1

|x̃i − ỹi|p
) 1

p

.

In both cases, this forms the metric induced by the corre-
sponding norm, which by definition has all desired prop-
erties (1), (2), (3), and (4). If we change all aggregation
methods to a weighted average operation, each term in the
sum is multiplied by a weight wi. This is even possible with
learned weights, as they are constant at evaluation time if
they are clamped to be positive as described above. Now, wi

can be attributed to both inputs by distributivity, meaning
each input is element-wise multiplied with a constant vector
before applying the metric, which leaves the metric prop-
erties untouched. The reason is that it is possible to define
new vectors in the same space, equal to the scaled inputs.
This renaming trivially provides the correct properties:

mweighted
2 (x̃, ỹ) =

b∑

i=1

wi|x̃i − ỹi|,

wi>0
=

b∑

i=1

|wix̃i − wiỹi|.

Accordingly, doing the same with the Lp norm idea is pos-
sible, and each wi just needs a suitable adjustment before
distributivity can be applied, keeping the metric properties
once again:

mweighted
2 (x̃, ỹ) =

(
b∑

i=1

wi|x̃i − ỹi|p
) 1

p

=

(
b∑

i=1

wi|x̃i − ỹi| |x̃i − ỹi| . . . |x̃i − ỹi|
) 1

p

=

(
b∑

i=1

w
1
p

i |x̃i − ỹi| w
1
p

i |x̃i − ỹi| . . . w
1
p

i |x̃i − ỹi|
) 1

p

,

wi>0
=

(
b∑

i=1

|w
1
p

i x̃i − w
1
p

i ỹi|p
) 1

p

.

With these weighted terms for m2, it is possible to describe
all used aggregations and latent space difference methods.
The proposed method deals with multiple higher order ten-
sors instead of a single vector. Thus, the weights wi addi-
tionally depend on constants such as the direction of the
aggregations and their position in the latent space tensors.
But it is easy to see that mapping a higher order tensor to a
vector and keeping track of additional constants still retains
all properties in the same way. As a result, the described
architecture by design yields a pseudometric that is suitable
for comparing simulation data in a way that corresponds to
our intuitive understanding of distances.

B. Architectures
The following sections provide details regarding the archi-
tecture of the base network and some experimental design.

B.1. Base Network Design

Fig. 1 shows the architecture of the base network for the
LSiM metric. Its purpose is to extract features from both
inputs of the Siamese architecture that are useful for the
further processing steps. To maximise the usefulness and
to avoid feature maps that show overly similar features,
the chosen kernel size and stride of the convolutions are
important. Starting with larger kernels and strides means
the network has a big receptive field and can consider simple,
low-level features in large regions of the input. For the two
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Figure 1. Proposed base network architecture consisting of five layers with up to 192 feature maps that are decreasing in spatial size. It is
similar to the feature extractor from AlexNet as identical spatial dimensions for the feature maps are used, but it reduces the number of
feature maps for each layer by 50% to have fewer weights.
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Figure 2. Analysis of the distributions of learned feature map aggregation weights across the base network layers. Displayed is a base
network with pre-trained weights (left) in comparison to our method for fully training the base network (right). Note that the percentage
of unused feature maps for most layers of our base network is 0%.

following layers, the large strides are replaced by additional
MaxPool operations that serve a similar purpose and reduce
the spatial size of the feature maps.

For the three final layers, only small convolution kernels
and strides are used, but the number of channels is signifi-
cantly larger than before. These deep features maps typically
contain high-level structures, which are most important to
distinguish complex changes in the inputs. Keeping the
number of trainable weights as low as possible was an im-
portant consideration for this design to prevent overfitting
to certain simulations types and increase generality. We
explored a weight range by using the same architecture and
only scaling the number of feature maps in each layer. The
final design shown in Fig. 1 with about 0.62 million weights
worked best for our experiments.

In the following, we analyze the contributions of the per-
layer features of two different metric networks to highlight
differences in terms of how the features are utilized for the
distance estimation task. In Fig. 2, our LSiM network yields
a significantly smaller standard deviation in the learned
weights that aggregate feature maps of five layers, com-
pared to a pre-trained base network. This means, all fea-
ture maps contribute to establishing the distances similarly,
and the aggregation just fine-tunes the relative importance
of each feature. In addition, almost all features receive a
weight greater than zero, and as a result, more features are
contributing to the final distance value.

Employing a fixed pre-trained feature extractor, on the other
hand, shows a very different picture: Although the mean
across the different network layers is similar, the contribu-
tions of different features vary strongly, which is visible in
the standard deviation being significantly larger. Further-
more, 2-10% of the feature maps in each layer receive a
weight of zero and hence were deemed not useful at all for
establishing the distances. This illustrates the usefulness of
a targeted network in which all features contribute to the
distance inference.

B.2. Feature Map Normalization

In the following, we analyze how the different feature
map normalizations discussed in Section 3.2 of the main
paper affect the performance of our metric. We com-
pare using no normalization normnone(G) = G, the unit
length normalization via division by the norm of a fea-
ture vector normunit(G) = G / ‖G‖2 proposed by Zhang
et al., a global unit length normalization normglobal(G) =
G /max (‖G0‖2 , ‖G1‖2 , . . . ) that considers the norm of all
feature vectors in the entire training set, and the proposed
normalization to a scaled chi distribution

normdist(G) =
1√
gc − 1

G−mean (G0,G1, . . . )

std (G0,G1, . . . )
.

Fig. 3 shows a comparison of these normalization methods
on the combined test data. Using no normalization is sig-
nificantly detrimental to the performance of the metric as
succeeding operations cannot reliably compare the features.
A unit length normalization of a single sample is already a
major improvement since following operations now have a
predictable range of values to work with. This corresponds
to a cosine distance, which only measures angles of the
feature vectors and entirely neglects their length.

0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74
Correlation on all test data

normnone

normunit

normglobal

normdist.

Figure 3. Performance on our test data for different feature map
normalization approaches.

Using the maximum norm across all training samples (com-
puted in a pre-processing step and fixed for training) in-
troduces additional information as the network can now
compare magnitudes as well. However, this comparison
is not stable as the maximum norm can be an outlier with
respect to the typical content of the corresponding feature.
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The proposed normalization forms a chi distribution by indi-
vidually transforming each component of the feature vector
to a standard normal distribution. Afterwards, scaling with
the inverse mode of the chi distribution leads to a consistent
average magnitude close to one. It results in the best per-
forming metric since both length and angle of the feature
vectors can be reliably compared by the following opera-
tions.

B.3. Recursive “Meta-Metric”

Since comparing the feature maps is a central operation of
the proposed metric calculations, we experimented with re-
placing it with an existing CNN-based metric. In theory, this
would allow for a recursive, arbitrarily deep network that
repeatedly invokes itself: first, the extracted representations
of inputs are used and then the representations extracted
from the previous representations, etc. In practice, however,
using more than one recursion step is currently not feasible
due to increasing computational requirements in addition to
vanishing gradients.

Fig. 4 shows how our computation method can be modi-
fied for a CNN-based latent space difference, instead of an
element-wise operation. Here we employ LPIPS (Zhang
et al., 2018). There are two main differences compared to
proposed method. First, the LPIPS latent space difference
creates single distance values for a pair of feature maps
instead of a spatial feature difference. As a result, the fol-
lowing aggregation is a single learned average operation and
spatial or layer aggregations are no longer necessary. We
also performed experiments with a spatial LPIPS version
here, but due to memory limitations, these were not success-
ful. Second, the convolution operations in LPIPS have a
lower limit for spatial resolution, and some feature maps of
our base network are quite small (see Fig. 1). Hence, we
up-scale the feature maps below the required spatial size of
32× 32 using nearest neighbor interpolation.

On our combined test data, such a metric with a fully
trained base network achieves a performance comparable to
AlexNetrandom or AlexNetfrozen.

B.4. Optical Flow Metric

In the following, we describe our approach to compute a
metric via optical flow (OF). For an efficient OF evalua-
tion, we employed a pre-trained network (Ilg et al., 2016).
From an OF network f : I × I → Rimax×jmax×2 with
two input data fields x,y ∈ I , we get the flow vector field
fxy(i, j) = (fxy1 (i, j), fxy2 (i, j))T , where i and j de-
note the locations, and f1 and f2 denote the components of
the flow vectors. In addition, we have a second flow field
fyx(i, j) computed from the reversed input ordering. We
can now define a function m : I× I→ [0,∞):

m(x,y) =

imax∑

i=0

jmax∑

j=0

√
(fxy1 (i, j))2 + (fxy2 (i, j))2

+
√

(fyx1 (i, j))2 + (fyx2 (i, j))2.

Intuitively, this function computes the sum over the mag-
nitudes of all flow vectors in both vector fields. With this
definition, it is obvious that m(x,y) fulfills the metric prop-
erties of non-negativity and symmetry (see Eq. (1) and (2)).
Under the assumption that identical inputs create a zero flow
field, a relaxed identity of indiscernibles holds as well (see
Eq. (4)). Compared to the proposed approach, there is no
guarantee for the triangle inequality though, thus m(x,y)
only qualifies as a pseudo-semimetric.

Fig. 5 shows flow visualizations on data examples produced
by FlowNet2. The metric works relatively well for inputs
that are similar to the training data from FlowNet2 such as
the shape data example in the top row. For data that provides
some outline, e.g., the smoke simulation example in the
middle row or also liquid data, the metric does not work
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latent space
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Distance
output
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Figure 4. Adjusted distance computation for a LPIPS-based latent space difference. To provide sufficiently large inputs for LPIPS, small
feature maps are spatially enlarged with nearest neighbor interpolation. In addition, LPIPS creates scalar instead of spatial differences
leading to a simplified aggregation.
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Figure 5. Outputs from FlowNet2 on data examples. The flow streamlines are sparse visualization of the resulting flow field and indicate
the direction of the flow by their orientation and its magnitude by their color (darker being larger). The two visualizations on the right
show the dense flow field and are color-coded to show the flow direction (blue/yellow: vertical, green/red: horizontal) and the flow
magnitude (brighter being larger).
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Figure 6. Non-Siamese network architecture with the same feature extractor used in Fig. 1. It uses both stacked inputs and directly predicts
the final distance value from the last set of feature maps with several fully connected layers.

as well but still provides a reasonable flow field. However,
for full spatial examples such as the Burger’s or Advection-
Diffusion cases (see bottom row), the network is no longer
able to produce meaningful flow fields. The results are often
a very uniform flow with similar magnitude and direction.

B.5. Non-Siamese Architecture

To compute a metric without the Siamese architecture out-
lined above, we use a network structure with a single output
as shown in Fig. 6. Thus, instead of having two identically
feature extractors and combining the feature maps, here the
distance is directly predicted from the stacked inputs with a
single network with about 1.24 million weights. After using
the same feature extractor as described in Section B.1, the
final set of feature maps is spatially reduced with an adap-
tive MaxPool operation. Next, the result is flattened, and

three consecutive fully connected layers process the data to
form the final prediction. Here, the last activation function
is a sigmoid instead of ReLU. The reason is that a ReLU
would clamp every negative intermediate value to a zero
distance, while a sigmoid compresses the intermediate value
to a small distance that is more meaningful than directly
clamping it.

In terms of metric properties, this architecture only provides
non-negativity (see Eq. (1)) due to the final sigmoid function.
All other properties cannot be guaranteed without further
constraints. This is the main disadvantage of a non-Siamese
network. These issues could be alleviated with specialized
training data or by manually adding constraints to the model,
e.g., to have some amount of symmetry (see Eq. (2)) and
at least a weakened identity of indiscernibles (see Eq. (4)).
However, compared to a Siamese network that guarantees
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Figure 7. Network architecture with skip connections for better information transport between feature maps. Transposed convolutions are
used to upscale the feature maps in the second half of the network to match the spatial size of earlier layers for the skip connections.

them by design, these extensions are clearly sub-optimal.
As a result of the missing properties, this network has signif-
icant problems with generalization. While it performs well
on the training data, the performance noticeably deteriorates
for several of the test data sets.

B.6. Skip Connections in Base Network

As explained above, our base network primarily serves as a
feature extractor to produce activations that are employed to
evaluate a learned metric.In many state-of-the-art methods,
networks with skip connections are employed (Ronneberger
et al., 2015; He et al., 2016; Huang et al., 2017), as experi-
ments have shown that these connections help to preserve
information from the inputs. In our case, the classification
“output” of a network such as the AlexNet plays no actual
role. Rather, the features extracted along the way are crucial.
Hence, skip connections should not improve the inference
task for our metrics.

To verify that this is the case, we have included tests with a
base network (see Fig. 7) similar to the popular UNet archi-
tecture (Ronneberger et al., 2015). For our experiments, we
kept the early layers closely in line with the feature extrac-
tors that worked well for the base network (see Section B.1).
Only the layers in the decoder part have an increased spa-
tial feature map size to accommodate the skip connections.
As expected, this network can be used to compute reliable
metrics for the input data without negatively affecting the
performance. However, as expected, the improvements of
skip connections for regular inference tasks do not translate
into improvements for the metric calculations.

C. Impact of Data Difficulty
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Figure 8. Impact of increasing data difficulty for a reduced training
data set. Evaluations on training data for L2 and LPIPS, and the
test performance of models trained with the different reduced data
sets (LSiMreduced) are shown.

We shed more light on the aspect of noise levels and data
difficulty via six reduced data sets that consist of a smaller
amount of Smoke and Advection-Diffusion data with dif-
ferently scaled noise strength values. Results are shown
in Fig. 8. Increasing the noise level creates more difficult
data as shown by the dotted and dashed plots representing
the performance of the L2 and the LPIPS metric on each
data set. Both roughly follow an exponentially decreasing
function. Each point on the solid line plot is the test result of
a reduced LSiM model trained on the data set with the corre-
sponding noise level. Apart from the data, the entire training
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setup was identical. This shows that the training process is
very robust to the noise, as the result on the test data only
slowly decreases for very high noise levels. Furthermore,
small amounts of noise improve the generalization com-
pared to the model that was trained without any noise. This
is somewhat expected, as a model that never saw noisy data
during training cannot learn to extract features which are
robust with respect to noise.

D. Data Set Details
In the following sections, the generation of each used data
set is described. For each figure showing data samples
(consisting of a reference simulation and several variants
with a single changing initial parameter), the leftmost image
is the reference and the images to the right show the variants
in order of increasing parameter change. For the figures 9,
10, 11, and 12, the first subfigure (a) demonstrates that
medium and large scale characteristics behave very non-
chaotic for simulations without any added noise. They are
only included for illustrative purposes and are not used for
training. The second and third subfigure (b) and (c) in
each case show the training data of LSiM, where the large
majority of data falls into the category (b) of normal samples
that follow the generation ordering, even with more varying
behaviour. Category (c) is a small fraction of the training
data, and the shown examples are specifically picked to
show how the chaotic behaviour can sometimes override the
ordering intended by the data generation in the worst case.
Occasionally, category (d) is included to show how normal
data samples from the test set differ from the training data.

D.1. Navier-Stokes Equations

These equations describe the general behaviour of fluids
with respect to advection, viscosity, pressure, and mass con-
servation. Eq. (5) defines the conservation of momentum,
and Eq. (6) constraints the conservation of mass:

∂u

∂t
+ (u · ∇)u = −∇P

ρ
+ ν∇2u+ g, (5)

∇ · u = 0. (6)

In this context, u is the velocity, P is the pressure the fluid
exerts, ρ is the density of the fluid (usually assumed to
be constant), ν is the kinematic viscosity coefficient that
indicates the thickness of the fluid, and g denotes the accel-
eration due to gravity. With this PDE, three data sets were
created using a smoke and a liquid solver. For all data, 2D
simulations were run until a certain step, and useful data
fields were exported afterwards.

SMOKE

For the smoke data, a standard Eulerian fluid solver using
a preconditioned pressure solver based on the conjugate

gradient method and Semi-Lagrangian advection scheme
was employed.

The general setup for every smoke simulation consists of a
rectangular smoke source at the bottom with a fixed additive
noise pattern to provide smoke plumes with more details.
Additionally, there is a downwards directed, spherical force
field area above the source, which divides the smoke in two
major streams along it. We chose this solution over an ac-
tual obstacle in the simulation in order to avoid overfitting
to a clearly defined black obstacle area inside the smoke
data. Once the simulation reaches a predefined time step,
the density, pressure, and velocity fields (separated by di-
mension) are exported and stored. Some example sequences
can be found in Fig. 9. With this setup, the following initial
conditions were varied in isolation:

• Smoke buoyancy in x- and y-direction

• Strength of noise added to the velocity field

• Amount of force in x- and y-direction provided by the
force field

• Orientation and size of the force field

• Position of the force field in x- and y-direction

• Position of the smoke source in x- and y-direction

Overall, 768 individual smoke sequences were used for
training, and the validation set contains 192 sequences with
different initialization seeds.

LIQUID

For the liquid data, a solver based on the fluid implicit parti-
cle (FLIP) method (Zhu & Bridson, 2005) was employed.
It is a hybrid Eulerian-Lagrangian approach that replaces
the Semi-Lagrangian advection scheme with particle based
advection to reduce numerical dissipation. Still, this method
is not optimal as we experienced problems such as mass
loss, especially for larger noise values.

The simulation setup consists of a large breaking dam and
several smaller liquid areas for more detailed splashes. After
the dam hits the simulation boundary, a large, single drop
of liquid is created in the middle of the domain that hits the
already moving liquid surface. Then, the extrapolated level
set values, binary indicator flags, and the velocity fields
(separated by dimension) are saved. Some examples are
shown in Fig. 10. The list of varied parameters include:

• Radius of the liquid drop

• Position of the drop in x- and y-direction

• Amount of additional gravity force in x- and y-
direction

• Strength of noise added to the velocity field
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(a) Data samples generated without noise: tiny output changes following generation ordering

(b) Normal training data samples with noise: larger output changes but ordering still applies

(c) Outlier data samples: noise can override the generation ordering by chance

Figure 9. Various smoke simulation examples using one component of the velocity (top rows), the density (middle rows), and the pressure
field (bottom rows).
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(a) Data samples generated without noise: tiny output changes following generation ordering

(b) Normal training data samples with noise: larger output changes but ordering still applies

(c) Outlier data samples: noise can override the generation ordering by chance

(d) Data samples from test set with additional background noise

Figure 10. Several liquid simulation examples using the binary indicator flags (top rows), the extrapolated level set values (middle rows),
and one component of the velocity field (bottom rows) for the training data and only the velocity field for the test data.
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(a) Data samples generated without noise: tiny output changes following generation ordering

(b) Normal training data samples with noise: larger output changes but ordering still applies

(c) Outlier data samples: noise can override the generation ordering by chance

(d) Data samples from test set with additional background noise

Figure 11. Various examples from the Advection-Diffusion equation using the density field.
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(a) Data samples generated without noise: tiny output changes following generation ordering

(b) Normal training data samples with noise: larger output changes but ordering still applies

(c) Outlier data samples: noise can override the generation ordering by chance

Figure 12. Different simulation examples from the Burger’s equation using the velocity field.

The liquid training set consists of 792 sequences and the
validation set of 198 sequences with different random seeds.
For the liquid test set, additional background noise was
added to the velocity field of the simulations as displayed
in Fig. 10(d). Because this only alters the velocity field, the
extrapolated level set values and binary indicator flags are
not used for this data set, leading to 132 sequences.

D.2. Advection-Diffusion and Burger’s Equation

For these PDEs, our solvers only discretize and solve the
corresponding equation in 1D. Afterwards, the different
time steps of the solution process are concatenated along a
new dimension to form 2D data with one spatial and one
time dimension.

ADVECTION-DIFFUSION EQUATION

This equation describes how a passive quantity is transported
inside a velocity field due to the processes of advection and
diffusion. Eq. (7) is the simplified Advection-Diffusion
equation with constant diffusivity and no sources or sinks.

∂d

∂t
= ν∇2d− u · ∇d, (7)

where d denotes the density, u is the velocity, and ν is the
kinematic viscosity (also known as diffusion coefficient)
that determines the strength of the diffusion. Our solver
employed a simple implicit time integration and a diffusion
solver based on conjugate gradient without preconditioning.
The initialization for the 1D fields of the simulations was
created by overlaying multiple parameterized sine curves
with random frequencies and magnitudes.

In addition, continuous forcing controlled by further param-
eterized sine curves was included in the simulations over
time. In this case, the only initial conditions to vary are the
forcing and initialization parameters of the sine curves and
the strength of the added noise. From this PDE, only the pas-
sive density field was used as shown in Fig. 11. Overall, 798
sequences are included in the training set and 190 sequences
with a different random initialization in the validation set.

For the Advection-Diffusion test set, the noise was instead
added directly to the passive density field of the simulations.
This results in 190 sequences with more small scale details
as shown in Fig. 11(d).
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BURGER’S EQUATION

This equation is very similar to the Advection-Diffusion
equation and describes how the velocity field itself changes
due to diffusion and advection:

∂u

∂t
= ν∇2u− u · ∇u. (8)

Eq. (8) is known as the viscous form of the Burger’s equation
that can develop shock waves, and again u is the velocity and
ν denotes the kinematic viscosity. Our solver for this PDE
used a slightly different implicit time integration scheme,
but the same diffusion solver as used for the Advection-
Diffusion equation.

The simulation setup and parameters were also the same; the
only difference is that the velocity field instead of the density
is exported. As a consequence, the data in Fig. 12 looks
relatively similar to those from the Advection-Diffusion
equation. The training set features 782 sequences, and the
validation set contains 204 sequences with different random
seeds.

D.3. Other Data-Sets

The remaining data sets are not based on PDEs and thus not
generated with the proposed method. The data is only used
to test the generalization of the discussed metrics and not
for training or validation. The Shapes test set contains 160
sequences, the Video test set consists 131 sequences, and
the TID test set features 216 sequences.

SHAPES

This data set tests if the metrics are able to track simple,
moving geometric shapes. To create it, a straight path be-
tween two random points inside the domain is generated

and a random shape is moved along this path in steps of
equal distance. The size of the used shape depends on the
distance between the start and end point such that a signifi-
cant fraction of the shape overlaps between two consecutive
steps. It is also ensured that no part of the shape leaves the
domain at any step by using a sufficiently big boundary area
when generating the path.

With this method, multiple random shapes for a single data
sample are produced, and their paths can overlap such that
they occlude each other to provide an additional challenge.
All shapes are moved in their parametric representation, and
only when exporting the data, they are discretized onto a
fixed binary grid. To add more variations to this simple
approach, we also apply them in a non-binary way with
smoothed edges and include additive Gaussian noise over
the entire domain. Examples are shown in Fig. 13.

VIDEO

For this data set, different publicly available video record-
ings were acquired and processed in three steps. First,
videos with abrupt cuts, scene transitions, or camera move-
ments were discarded, and afterwards the footage was bro-
ken down into single frames. Then, each frame was resized
to match the spatial size of our other data by linear interpola-
tion. Since directly using consecutive frames is no challenge
for any analyzed metric and all of them recovered the or-
dering almost perfectly, we achieved a more meaningful
data set by skipping several intermediate frames. For the
final data set, we defined the first frame of every video as
the reference and collected subsequent frames in an interval
step of ten frames as the increasingly different variations.
Some data examples can be found in Fig. 14.

Figure 13. Examples from the shapes data set using a field with only binary shape values (first row), shape values with additional noise
(second row), smoothed shape values (third row), and smoothed values with additional noise (fourth row).
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Figure 14. Multiple examples from the video data set.

Figure 15. Examples from the TID2013 data set proposed by Ponomarenko et al.. Displayed are a change of contrast, three types of noise,
denoising, jpg2000 compression, and two color quantizations (from left to right and top to bottom).

TID2013

This data set was created by Ponomarenko et al. and used
without any further modifications. It consists of 25 reference
images with 24 distortion types in five levels. As a result,
it is not directly comparable to our data sets; thus, it is
excluded from the test set aggregations. The distortions
focus on various types of noise, image compression, and
color changes. Fig. 15 contains examples from the data set.

D.4. Hardware

Data generation, training, and metric evaluations were per-
formed on a machine with an Intel i7-6850 (3.60Ghz) CPU
and an NVIDIA GeForce GTX 1080 Ti GPU.

E. Real-World Data
Below, we give details of the three data sets used for the
evaluation in Section 6.3 of the main paper.

E.1. ScalarFlow

The ScalarFlow data set (Eckert et al., 2019) contains
3D velocities of real-world scalar transport flows recon-
structed from multiple camera perspectives. For our eval-
uation, we cropped the volumetric 100× 178× 100 grids
to 100× 160× 100 such that they only contain the area of
interest and convert them to 2D with two variants: either
by using the center slice or by computing the mean along
the z-dimension. Afterwards, the velocity vectors are split
by channels, linearly interpolated to 256 × 256, and then
normalized. Variations for each reconstructed plume are
acquired by using frames in equal temporal intervals. We
employed the velocity field reconstructions from 30 plumes
(with simulation IDs 0− 29) for both compression methods.
Fig. 16 shows some example sequences.

E.2. Johns Hopkins Turbulence Database

The Johns Hopkins Turbulence Database (JHTDB) (Perl-
man et al., 2007) features various data sets of 3D turbu-
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Figure 16. Four different smoke plume examples of the processed ScalarFlow data set using one of the three velocity components. The
two top rows show the center slice, and the two bottom rows show the mean along the z-dimension. The temporal interval between each
image is ten simulation time steps.

Figure 17. Data samples extracted from the Johns Hopkins Turbulence Database with a spatial or temporal interval of ten using one of the
three velocity components. From top to bottom: mhd1024 and isotropic1024coarse (varied time step), isotropic4096 and rotstrat4096
(varied z-position), channel and channel5200 (varied x-position).
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Figure 18. Examples of the processed WeatherBench data: high-res temperature data 1.40625deg/temperature (upper two rows) and
low-res geopotential data 5.625deg/geopotential 500 (lower two rows). The temporal interval spacing between the images is twenty hours.

lent flow fields created with direct numerical simulations
(DNS). Here, we used three forced isotropic turbulence
data sets with different resolutions (isotropic1024coarse,
isotropic1024fine, and isotropic4096), two channel flows
with different Reynolds numbers (channel and channel-
5200), the forced magneto-hydrodynamic isotropic turbu-
lence data set (mhd1024), and the rotating stratified turbu-
lence data set (rotstrat4096).

For the evaluation, five 256 × 256 reference slices in the
x/y-plane from each of the seven data sets are used. The
spatial and temporal position of each slice is randomized
within the bounds of the corresponding simulation domain.
We normalize the value range and split the velocity vectors
by component for an individual evaluation. Variants for
each reference are created by gradually varying the x- and z-
position of the slice in equal intervals. The temporal position
of each slice is varied as well if a sufficient amount of tem-
porally resolved data is available (for isotropic1024coarse,
isotropic1024fine, channel, and mhd1024). This leads to
216 sequences in total. Fig. 17 shows examples from six of
the JHTDB data sets.

E.3. WeatherBench

The WeatherBench repository (Rasp et al., 2020) represents
a collection of various weather measurements of different
atmospherical quantities such as precipitation, cloud cov-
erage, wind velocities, geopotential, and temperature. The
data ranges from 1979 to 2018 with a fine temporal reso-
lution and is stored on a Cartesian latitude-longitude grid
of the earth. In certain subsets of the data, an additional
dimension such as altitude or pressure levels is available. As
all measurements are available as scalar fields, only a linear
interpolation to the correct input size and a normalization
was necessary in order to prepare the data. We used the low-

resolution geopotential data set at 500hPa (i.e., at around
5.5km height) with a size of 32 × 64 yielding smoothly
changing features when upsampling the data. In addition,
the high-res temperature data with a size of 128× 256 for
small scale details was used. For the temperature field,
we used the middle atmospheric pressure level at 850hPa
corresponding to an altitude of 1.5km in our experiments.

To create sequences with variations for a single time step
of the weather data, we used frames in equal time inter-
vals, similar to the ScalarFlow data. Due to the very fine
temporal discretization of the data, we only use a temporal
interval of two hours as the smallest interval step of one in
Fig. 19. We sampled three random starting points in time
from each of the 40 years of measurements, resulting in
120 temperature and geopotential sequences overall. Fig. 18
shows a collection of example sequences.

E.4. Detailed Results

For each of the variants explained in the previous sections,
we create test sets with six different spatial and temporal
intervals. Fig. 19 shows the combined Spearman correlation
of the sequences for different interval spacings when evalu-
ating various metrics. For the results in Fig. 7 in the main
paper, all correlation values shown here are aggregated by
data source via mean and standard deviation.

While our metric reliably recovers the increasing distances
within the data sets, the individual measurements exhibit
interesting differences in terms of their behavior for varying
distances. As JHTDB and WeatherBench contain relatively
uniform phenomena, a larger step interval creates more dif-
ficult data as the simulated and measured states contain
changes that are more and more difficult to analyze along
a sequence. For ScalarFlow, on the other hand, the diffi-
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Figure 19. Detailed breakdown of the results when evaluating LSiM on the individual data sets of ScalarFlow (30 sequences each), JHTDB
(90 sequences each), and WeatherBench (120 sequences each) with different step intervals.

culty decreases for larger intervals due to the large-scale
motion of the reconstructed plumes. As a result of buoyancy
forces, the observed smoke rises upwards into areas where
no smoke has been before. For the network, this makes
predictions relatively easy as the large-scale translations
are indicative of the temporal progression, and small scale
turbulence effects can be largely ignored. For this data set,
smaller intervals are more difficult as the overall shape of
the plume barely changes while the complex evolution of
small scale features becomes more important.

Overall, the LSiM metric recovers the ground truth ordering
of the sequences very well as indicated by the consistently
high correlation values in Fig. 19. The other metrics comes
close to these results on certain sub-datasets but are signifi-
cantly less consistent. SSIM struggles on JHTDB across all
interval sizes, and LPIPS cannot keep up on WeatherBench,
especially for larger intervals. L2 is more stable overall, but
consistently stays below the correlation achieved by LSiM.

F. Additional Evaluations
In the following, we demonstrate other ways to compare the
performance of the analyzed metrics on our data sets. In

Tab. 1, the Pearson correlation coefficient is used instead of
Spearman’s rank correlation coefficient. While Spearman’s
correlation measures monotonic relationships by using rank-
ing variables, it directly measures linear relationships.

The results in Tab. 1 match very closely to the values com-
puted with Spearman’s rank correlation coefficient. The
best performing metrics in both tables are identical; only
the numbers slightly vary. Since a linear and a monotonic
relation describes the results of the metrics similarly well,
there are no apparent non-linear dependencies that cannot
be captured using the Pearson correlation.

In the Tables 2 and 3, we employ a different, more intuitive
approach to determine combined correlation values for each
data set using the Pearson correlation. We are no longer
analyzing the entire predicted distance distribution and the
ground truth distribution at once as done above. Instead, we
individually compute the correlation between the ground
truth and the predicted distances for the single data samples
of the data set. From the single correlation values, we
compute the mean and standard deviations shown in the
tables. Note that this approach potentially produces less
accurate comparison results, as small errors in the individual
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Table 1. Performance comparison on validation and test data sets measured in terms of the Pearson correlation coefficient of ground truth
against predicted distances. Bold+underlined values show the best performing metric for each data set, bold values are within a 0.01
error margin of the best performing, and italic values are 0.2 or more below the best performing. On the right a visualization of the
combined test data results is shown for selected models.

Metric
Validation data sets Test data sets

Smo Liq Adv Bur TID LiqN AdvD Sha Vid All

L2 0.66 0.80 0.72 0.60 0.82 0.73 0.55 0.66 0.79 0.60
SSIM 0.69 0.74 0.76 0.70 0.78 0.26 0.69 0.49 0.73 0.53
LPIPS v0.1. 0.63 0.68 0.66 0.71 0.85 0.49 0.61 0.84 0.83 0.65

AlexNetrandom 0.63 0.69 0.67 0.65 0.83 0.64 0.63 0.74 0.81 0.65
AlexNetfrozen 0.66 0.69 0.68 0.71 0.85 0.39 0.61 0.86 0.83 0.64
Optical flow 0.63 0.56 0.37 0.39 0.49 0.45 0.28 0.61 0.74 0.48
Non-Siamese 0.77 0.84 0.78 0.74 0.67 0.81 0.64 0.27 0.79 0.60
Skipfrom scratch 0.79 0.83 0.80 0.73 0.85 0.78 0.61 0.79 0.84 0.71

LSiMnoiseless 0.77 0.77 0.76 0.72 0.86 0.62 0.58 0.84 0.83 0.68
LSiMstrong noise 0.65 0.64 0.66 0.68 0.81 0.39 0.53 0.90 0.82 0.64
LSiM (ours) 0.78 0.82 0.79 0.74 0.86 0.79 0.58 0.87 0.82 0.72
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Table 2. Performance comparison on validation data sets measured by computing mean and standard deviation (in brackets) of Pearson
correlation coefficients (ground truth against predicted distances) from individual data samples. Bold+underlined values show the best
performing metric for each data set, bold values are within a 0.01 error margin of the best performing, and italic values are 0.2 or more
below the best performing. On the right a visualization of the combined test data results is shown for selected models.

Metric
Validation data sets

Smo Liq Adv Bur

L2 0.68 (0.27) 0.82 (0.18) 0.74 (0.24) 0.63 (0.33)
SSIM 0.71 (0.23) 0.75 (0.23) 0.79 (0.21) 0.73 (0.33)
LPIPS v0.1. 0.66 (0.29) 0.71 (0.24) 0.70 (0.29) 0.75 (0.28)

AlexNetrandom 0.65 (0.28) 0.71 (0.29) 0.71 (0.27) 0.68 (0.31)
AlexNetfrozen 0.69 (0.27) 0.72 (0.25) 0.71 (0.27) 0.74 (0.29)
Optical flow 0.66 (0.38) 0.59 (0.47) 0.38 (0.52) 0.41 (0.49)
Non-Siamese 0.80 (0.19) 0.87 (0.14) 0.81 (0.20) 0.76 (0.32)
Skipfrom scratch 0.81 (0.19) 0.85 (0.16) 0.82 (0.19) 0.77 (0.30)

LSiMnoiseless 0.79 (0.21) 0.79 (0.20) 0.79 (0.23) 0.76 (0.29)
LSiMstrong noise 0.67 (0.28) 0.66 (0.29) 0.68 (0.30) 0.70 (0.32)
LSiM (ours) 0.81 (0.20) 0.84 (0.16) 0.81 (0.19) 0.78 (0.28)
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Table 3. Performance comparison on test data sets measured by computing mean and std. dev. (in brackets) of Pearson correlation
coefficients (ground truth against predicted distances) from individual data samples. Bold+underlined values show the best performing
metric for each data set, bold values are within a 0.01 error margin of the best performing, and italic values are 0.2 or more below the
best performing.

Metric
Test data sets

TID LiqN AdvD Sha Vid All

L2 0.84 (0.08) 0.75 (0.18) 0.57 (0.38) 0.67 (0.18) 0.84 (0.27) 0.69 (0.29)
SSIM 0.81 (0.20) 0.26 (0.38) 0.71 (0.31) 0.53 (0.32) 0.77 (0.28) 0.58 (0.38)
LPIPS v0.1. 0.87 (0.11) 0.51 (0.34) 0.63 (0.34) 0.85 (0.14) 0.87 (0.22) 0.71 (0.31)

AlexNetrandom 0.84 (0.10) 0.67 (0.24) 0.65 (0.33) 0.74 (0.18) 0.85 (0.26) 0.72 (0.28)
AlexNetfrozen 0.86 (0.11) 0.41 (0.37) 0.64 (0.34) 0.87 (0.14) 0.87 (0.22) 0.70 (0.34)
Optical flow 0.74 (0.67) 0.50 (0.34) 0.32 (0.53) 0.63 (0.45) 0.78 (0.45) 0.53 (0.49)
Non-Siamese 0.87 (0.12) 0.84 (0.12) 0.66 (0.34) 0.31 (0.45) 0.83 (0.26) 0.64 (0.39)
Skipfrom scratch 0.87 (0.12) 0.80 (0.16) 0.63 (0.37) 0.80 (0.17) 0.87 (0.20) 0.76 (0.27)

LSiMnoiseless 0.87 (0.11) 0.64 (0.29) 0.60 (0.38) 0.86 (0.15) 0.86 (0.22) 0.73 (0.31)
LSiMstrong noise 0.83 (0.12) 0.39 (0.38) 0.55 (0.36) 0.91 (0.17) 0.86 (0.25) 0.67 (0.37)
LSiM (ours) 0.88 (0.10) 0.81 (0.15) 0.60 (0.37) 0.88 (0.16) 0.85 (0.23) 0.77 (0.28)
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computations can accumulate to larger deviations in mean
and standard deviation. Still, both tables lead to very similar
conclusions: The best performing metrics are almost the
same, and low combined correlation values match with
results that have a high standard deviation and a low mean.

Fig. 20 shows a visualization of predicted distances c against
ground truth distances d for different metrics on every sam-
ple from the test sets. Each plot contains over 6700 individ-
ual data points to illustrate the global distance distributions
created by the metrics, without focusing on single cases.
A theoretical optimal metric would recover a perfectly nar-
row distribution along the line c = d, while worse metrics
recover broader, more curved distributions. Overall, the
sample distribution of an L2 metric is very wide. LPIPS
manages to follow the optimal diagonal a lot better, but our
approach approximates it with the smallest deviations, as
also shown in the tables above. The L2 metric performs
very poorly on the shape data indicated by the too steeply
increasing blue lines that flatten after a ground truth distance
of 0.3. LPIPS already significantly reduces this problem,
but LSiM still works slightly better.

A similar issue is visible for the Advection-Diffusion data,
where for L2 a larger number of red samples is below the

optimal c = d line, than for the other metrics. LPIPS has
the worst overall performance for liquid test set, indicated
by the large number of fairly chaotic green lines in the plot.
On the video data, all three metrics perform similarly well.

A fine-grained distance evaluation in 200 steps ofL2 and our
LSiM metric via the mean and standard deviation of different
data samples is shown in Fig. 21. Similar to Fig. 20, the
mean of an optimal metric would follow the ground truth
line with a standard deviation of zero, while the mean of
worse metrics deviates around the line with a high standard
deviation. The plot on the left combines eight samples with
different seeds from the Sha data set, where only a single
shape is used. Similarly, the center plot aggregates eight
samples from Sha with more than one shape. The right plot
shows six data samples from the LiqN test set that vary by
the amount of noise that was injected into the simulation.

The task of only tracking a single shape in the example on
the left is the easiest of the three shown cases. Both metrics
have no problem to recover the position change until a vari-
ation of 0.4, where L2 can no longer distinguish between
the different samples. Our metric recovers distances with a
continuously rising mean and a very low standard deviation.
The task in the middle is already harder, as multiple shapes

Figure 20. Distribution evaluation of ground truth distances against normalized predicted distances for L2, LPIPS and LSiM on all test
data (color coded).

Figure 21. Mean and standard deviation of normalized distances over multiple data samples for L2 and LSiM. The samples differ by the
quantity displayed in brackets. Each data sample uses 200 parameter variation steps instead of 10 like the others in our data sets. For the
shape data the position of the shape varies and for the liquid data the gravity in x-direction is adjusted.
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can occlude each other during the position changes. Starting
at a position variation of 0.4, both metrics have a quite high
standard deviation, but the proposed method stays closer to
the ground truth line. L2 shows a similar issue as before
because it flattens relatively fast. The plot on the right fea-
tures the hardest task. Here, both metrics perform similar as
each has a different problem in addition to an unstable mean.
Our metric stays close to the ground truth, but has a quite
high standard deviation starting at about a variation of 0.4.
The standard deviation of L2 is lower, but instead it starts
off with a big jump from the first few data points. To some
degree, this is caused by the normalization of the plots, but it
still overestimates the relative distances for small variations
in the simulation parameter.

These findings also match with the distance distribution
evaluations in Fig. 20 and the tables above: Our method has
a significant advantage over shallow metrics on shape data,
while the differences of both metrics become much smaller
for the liquid test set.

G. Notation
In this work, we follow the notation suggested by Good-
fellow et al.. Vector quantities are displayed in bold, and
tensors use a sans-serif font. Double-barred letters indicate
sets or vector spaces. The following symbols are used:

R Real numbers

i, j Indexing in different contexts

I Input space of the metric, i.e., color
images/field data of size 224× 224× 3

a Dimension of the input space I when
flattened to a single vector

x,y, z Elements in the input space I

L Latent space of the metric, i.e., sets of
3rd order feature map tensors

b Dimension of the latent space L when
flattened to a single vector

x̃, ỹ, z̃ Elements in the latent space L, corre-
sponding to x,y, z

w Weights for the learned average aggre-
gation (1 per feature map)

p0, p1, . . . Initial conditions / parameters of a nu-
merical simulation

n Number of variations of a simulation
parameter, thus determines length of
the network input sequence

o0, o1, . . . , on Series of outputs of a simulation with
increasing ground truth distance to o0

∆ Amount of change in a single simula-
tion parameter

t1, t2, . . . , tt Time steps of a numerical simulation

v Variance of the noise added to a simu-
lation

c Ground truth distance distribution, de-
termined by the data generation via ∆

d Predicted distance distribution (sup-
posed to match the corresponding c)

c̄, d̄ Mean of the distributions c and d

‖. . . ‖2 Euclidean norm of a vector

m(x,y) Entire function computed by our metric

m1(x,y) First part ofm(x,y), i.e., base network
and feature map normalization

m2(x̃, ỹ) Second part of m(x,y), i.e., latent
space difference and the aggregations

G 3rd order feature tensor from one layer
of the base network

gb, gc, gx, gy Batch (gb), channel (gc), and spatial
dimensions (gx, gy) of G

f Optical flow network

fxy, fyx Flow fields computed by an optical
flow network f from two inputs in I

fxy1 , fxy2 Components of the flow field fxy

∇,∇2 Gradient (∇) and Laplace operator
(∇2)

∂ Partial derivative operator

t Time in our PDEs

u Velocity in our PDEs

ν Kinematic viscosity / diffusion coeffi-
cient in our PDEs

d, ρ Density in our PDEs

P Pressure in the Navier-Stokes Equa-
tions

g Gravity in the Navier-Stokes Equations
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Abstract
Simulations that produce three-dimensional data are ubiqui-
tous in science, ranging from fluid flows to plasma physics. We
propose a similarity model based on entropy, which allows for
the creation of physically meaningful ground truth distances
for the similarity assessment of scalar and vectorial data, pro-
duced from transport and motion-based simulations. Utilizing
two data acquisition methods derived from this model, we
create collections of fields from numerical PDE solvers and
existing simulation data repositories. Furthermore, a multi-
scale CNN architecture that computes a volumetric similarity
metric (VolSiM) is proposed. To the best of our knowledge
this is the first learning method inherently designed to ad-
dress the challenges arising for the similarity assessment of
high-dimensional simulation data. Additionally, the tradeoff
between a large batch size and an accurate correlation compu-
tation for correlation-based loss functions is investigated, and
the metric’s invariance with respect to rotation and scale oper-
ations is analyzed. Finally, the robustness and generalization
of VolSiM is evaluated on a large range of test data, as well as
a particularly challenging turbulence case study, that is close
to potential real-world applications.

1 Introduction
Making comparisons is a fundamental operation that is essen-
tial for any kind of computation. This is especially true for the
simulation of physical phenomena, as we are often interested
in comparing simulations against other types of models or
measurements from a physical system. Mathematically, such
comparisons require metric functions that determine scalar
distance values as a similarity assessment. A fundamental
problem is that traditional comparisons are typically based on
simple, element-wise metrics like the L1 or L2 distances, due
to their computational simplicity and a lack of alternatives.
Such metrics can work reliably for systems with few elements
of interest, e.g. if we want to analyze the position of a mov-
ing object at different points in time, matching our intuitive
understanding of distances. However, more complex physical
problems often exhibit large numbers of degrees of freedom,
and strong dependencies between elements in their solutions.
Those coherences should be considered when comparing
physical data, but element-wise operations by definition ig-
nore such interactions between elements. With the curse of
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

dimensionality, this situation becomes significantly worse for
systems that are modeled with dense grid data, as the number
of interactions grows exponentially with a linearly increasing
number elements. Such data representations are widely used,
e.g. for medical blood flow simulations (Olufsen et al. 2000),
climate and weather predictions (Stocker et al. 2014), and
even the famous unsolved problem of turbulence (Holmes
et al. 2012). Another downside of element-wise metrics is
that each element is weighted equally, which is typically
suboptimal; e.g. smoke plumes behave differently along the
vertical dimension due to gravity or buoyancy, and small key
features like vortices are more indicative of the fluid’s general
behavior than large areas of near constant flow (Pope 2000).

In the image domain, neural networks have been employed
for similarity models that can consider larger structures, typi-
cally via training with class labels that provide semantics, or
with data that encodes human perception. Similarly, physical
systems exhibit spatial and temporal coherence due to the
underlying laws of physics that can be utilized. In contrast to
previous work on simulation data (Kohl, Um, and Thuerey
2020), we derive an entropy-based similarity model to ro-
bustly learn similarity assessments of scalar and vectorial
volumetric data. Overall, our work contributes the following:
• We propose a novel similarity model based on the en-

tropy of physical systems. It is employed to synthesize
sequences of volumetric physical fields suitable for metric
learning.

• We show that our Siamese multiscale feature network
results in a stable metric that successfully generalizes to
new physical phenomena. To the best of our knowledge
this is the first learned metric inherently designed for the
similarity assessment of volumetric fields.

• The metric is employed to analyze turbulence in a case
study, and its invariance to rotation and scale are evaluated.
In addition, we analyze correlation-based loss functions
with respect to their tradeoff between batch size and accu-
racy of correlation computation.

The central application of the proposed VolSiM metric is the
similarity assessment of new physical simulation methods,
numerical or learning-based, against a known ground truth.1

1Our source code, datasets, and ready-to-use models are avail-
able at https://github.com/tum-pbs/VOLSIM. For a version of this
work with an appendix also see https://arxiv.org/abs/2202.04109.



This ground truth can take the form of measurements, higher
resolution simulations, or existing models. Similar to percep-
tual losses for computer vision tasks, the trained metric can
also be used as a differentiable similarity loss for various
physical problems. We refer to Thuerey et al. (2021) for an
overview of such problems and different learning methods to
approach them.

2 Related Work
Apart from simple Ln distances, the two metrics peak signal-
to-noise ratio (PSNR) and structural similarity index (SSIM)
from Wang et al. are commonly used across disciplines for
the similarity assessment of data. Similar to the underlying
L2 distance, PSNR shares the issues of element-wise metrics
(Huynh-Thu and Ghanbari 2008, 2012). SSIM computes a
more intricate function, but it was shown to be closely re-
lated to PSNR (Horé and Ziou 2010) and thus has similar
problems (Nilsson and Akenine-Möller 2020). Furthermore,
statistical tools like the Pearson correlation coefficient PCC
(Pearson 1920) and Spearman’s rank correlation coefficient
SRCC (Spearman 1904) can be employed as a simple simi-
larity measurement. There are several learning-based metrics
specialized for different domains such as rendered (Ander-
sson et al. 2020) and natural images (Bosse et al. 2016),
interior object design (Bell and Bala 2015), audio (Avgousti-
nakis et al. 2020), and haptic signals (Kumari, Chaudhuri,
and Chaudhuri 2019).

Especially for images, similarity measurements have been
approached in various ways, but mostly by combining deep
embeddings as perceptually more accurate metrics (Prashnani
et al. 2018; Talebi and Milanfar 2018). These metrics can
be employed for various applications such as image super-
resolution (Johnson, Alahi, and Fei-Fei 2016) or generative
tasks (Dosovitskiy and Brox 2016). Traditional metric learn-
ing for images typically works in one of two ways: Either, the
training is directly supervised by learning from manually cre-
ated labels, e.g. via two-alternative forced choice where hu-
mans pick the most similar option to a reference (Zhang et al.
2018), or the training is indirectly semi-supervised through
images with class labels and a contrastive loss (Chopra, Had-
sell, and LeCun 2005; Hadsell, Chopra, and LeCun 2006).
In that case, triplets of reference, same class image, and
other class images are sampled, and the corresponding latent
space representations are pulled together or pushed apart.
We refer to Roth et al. (2020) for an overview of different
training strategies for learned image metrics. In addition, we
study the behavior of invariance and equivariance to different
transformations, which was targeted previously for rotational
symmetries (Weiler et al. 2018; Chidester et al. 2019) and
improved generalization (Wang, Walters, and Yu 2021).

Similarity metrics for simulation data have not been stud-
ied extensively yet. Siamese networks for finding similar
fluid descriptors have been applied to smoke flow synthesis,
where a highly accurate similarity assessment is not necessary
(Chu and Thuerey 2017). Um et al. (2017; 2021) used crowd-
sourced user studies for the similarity assessment of liquid
simulations which rely on relatively slow and expensive hu-
man evaluations. Scalar 2D simulation data was previously
compared with a learned metric using a Siamese network

(Kohl, Um, and Thuerey 2020), but we overcome methodi-
cal weaknesses and improve upon the performance of their
work. Their LSiM method relies on a basic feature extractor
based on common classification CNNs, does not account for
the long-term behavior of different systems with respect to
entropy via a similarity model during training, and employs
a simple heuristic to generate suitable data sequences.

3 Modeling Similarity of Simulations
To formulate our methodology for learning similarity met-
rics that target dissipative physical systems, we turn to the
fundamental quantity of entropy. The second law of thermo-
dynamics states that the entropy S of a closed physical system
never decreases, thus ∆S ≥ 0. In the following, we make the
reasonable assumption that the behavior of the system is con-
tinuous and non-oscillating, and that ∆S > 0.2 Eq. 1 is the
Boltzmann equation from statistical mechanics (Boltzmann
1866), that describes S in terms of the Boltzmann constant
kb and the number of microstates W of a system.3

S = kB log(W ) (1)

Since entropy only depends on a single system state, it can be
reformulated to take the relative change between two states
into account. From an information-theoretical perspective,
this is related to using Shannon entropy (Shannon 1948) as a
diversity measure, as done by Rényi (1961). Given a sequence
of states s0, s1, . . . , sn, we define the relative entropy

S̃(s) = k log(10cws). (2)

Here, ws is the monotonically increasing, relative number of
microstates defined as 0 for s0 and as 1 for sn. 10c > 0 is
a system-dependent factor that determines how quickly the
number of microstates increases, i.e. it represents the speed
at which different processes decorrelate. As the properties
of similarity metrics dictate that distances are always non-
negative and only zero for identical states, the lower bound
in Eq. 2 is adjusted to 0, leading to a first similarity model
D̂(s) = k log(10c ws + 1). Finally, relative similarities are
equivalent up to a multiplicative constant, and thus we can
freely choose k. Choosing k = 1/(log 10c + 1) leads to the
full similarity model

D(s) =
log(10c ws + 1)

log(10c + 1)
. (3)

For a sequence s, it predicts the overall similarity behavior
between the reference s0 and the other states with respect to
entropy, given the relative number of microstates ws and the
system decorrelation speed c.

Fig. 1 illustrates the connection between the logarithmi-
cally increasing entropy and the proposed similarity model

2These assumptions are required to create sequences with mean-
ingful ground truth distances below in Sec. 4.

3We do not have any a priori information about the distribution
of the likelihood of each microstate in a general physical system.
Thus, the Boltzmann entropy definition which assumes a uniform
microstate distribution is used in the following, instead of more
generic entropy models such as the Gibbs or Shannon entropy.
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Figure 1: Idealized model of the behavior of entropy and
similarity for different ∆ or different c, respectively.

for a state sequence with fixed length n. Here, ∆ denotes
the magnitude of change between the individual sequence
states which is directly related to ws, and c is the decorre-
lation speed of the system that produced the sequence. In
the following, we will refer to the property of a sequence
being informative with respect to a pairwise similarity anal-
ysis as difficulty. Sequences that align with the red dotted
curve contain little information as they are dissimilar to s0
too quickly, either because the original system decorrelates
too fast or because the difference between each state is too
large (high difficulty). On the other hand, sequences like the
green dashed curve are also not ideal as they change too
little, and a larger non-practical sequence length would be
necessary to cover long-term effects (low difficulty). Ideally, a
sequence s employed for learning tasks should evenly exhibit
both regimes as well as intermediate ones, as indicated by
the black curve. The central challenges now become finding
sequences with a suitable magnitude of ∆, determining c,
and assigning distances d to pairs from the sequence.

4 Sequence Creation
To create a sequence s0, s1, . . . , sn within a controlled envi-
ronment, we make use of the knowledge about the underlying
physical processes: We either employ direct changes, based
on spatial or temporal coherences to s0, or use changes to the
initial conditions of the process that lead to s0. As we can
neither directly determine c nor d at this point, we propose to
use proxies for them during the sequence generation. Initially,
this allows for finding sequences that roughly fall in a suit-
able difficulty range, and accurate values can be computed
afterwards. Here, we use the mean squared error (MSE) as
a proxy distance function and the PCC to determine c, to
iteratively update ∆ to a suitable range.

Given any value of ∆ and a corresponding sequence, pair-
wise proxy distances4 between the sequence elements are
computed d∆ = MSE(si, sj) and min-max normalized to
[0, 1]. Next, we determine a distance sequence corresponding
to the physical changes over the states, which we model as
a simple linear increase over the sequence ws = (j − i)/n
following (Kohl, Um, and Thuerey 2020). To indirectly de-
termine c, we compare how both distance sequences differ in
terms of the PCC as r = PCC(d∆,ws). We empirically de-
termined that correlations between 0.65 and 0.85 work well
for all cases we considered. In practice, the network stops
learning effectively for lower correlation values as states are

4To keep the notation clear and concise, sequentially indexing
the distance vectors d∆ and ws with i and j is omitted here.

too different, while sequences with higher values reduce gen-
eralization as a simple metric is sufficient to describe them.
Using these thresholds, we propose two semi-automatic it-
erative methods to create data, depending on the method
to introduce variations to a given state (see Fig. 2). Both
methods sample a small set of sequences to calibrate ∆ to
a suitable magnitude and use that value for the full data set.
Compared to strictly sampling every sequence, this method is
computationally significantly more efficient as less sampling
is needed, and it results in a more natural data distribution.

[A] Variations from Initial Conditions of Simulations
Given a numerical PDE solver and a set of initial conditions
or parameters p, the solver computes a solution to the PDE
over the time steps t0, t1, . . . , tt. To create a larger number of
different sequences, we make the systems non-deterministic
by adding noise to a simulation field and randomly gener-
ating the initial conditions from a given range. Adjusting
one of the parameters pi in steps with a small perturbation
∆i, allows for the creation of a sequence s0, s1, . . . , sn with
decreasing similarity to the unperturbed simulation output s0.
This is repeated for every suitable parameter in p, and the
corresponding ∆ is updated individually until the targeted
MSE correlation range is reached. The global noise strength
factor also influences the difficulty and can be updated.

[B] Variations from Spatio-temporal Coherences For a
source D of volumetric spatio-temporal data without access to
a solver, we rely on a larger spatial and/or temporal dimension
than the one required for a sequence. We start at a random
spatio-temporal position p to extract a cubical spatial area s0
around it. p can be repeatedly translated in space and/or time
by ∆t,x,y,z to create a sequence s0, s1, . . . , sn of decreasing
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Figure 2: Iteration schemes to calibrate and create data se-
quences of decreasing similarity. Variation from the reference
state can be introduced via the initial conditions of a numeri-
cal PDE simulation (method [A], top), or via spatio-temporal
data changes on data from a repository (method [B], bottom).



similarity. Note that individual translations in space or time
should be preferred if possible. Using different starts leads to
new sequences, as long as enough diverse data is available. It
is possible to add some global random perturbations q to the
positions to further increase the difficulty.

Data Sets To create training data with method [A], we uti-
lize solvers for a basic Advection-Diffusion model (Adv),
Burgers’ equation (Bur) with an additional viscosity term,
and the full Navier-Stokes equations via a Eulerian smoke
simulation (Smo) and a hybrid Eulerian-Lagrangian liquid
simulation (Liq). The corresponding validation sets are gen-
erated with a separate set of random seeds. Furthermore, we
use adjusted versions of the noise integration for two test
sets, by adding noise to the density instead of the velocity
in the Advection-Diffusion model (AdvD) and overlaying
background noise in the liquid simulation (LiqN).

We create seven test sets via method [B]. Four come from
the Johns Hopkins Turbulence Database JHTDB (Perlman
et al. 2007) that contains a large amount of direct numerical
simulation (DNS) data, where each is based on a subset of
the JHTDB and features different characteristics: isotropic
turbulence (Iso), a channel flow (Cha), magneto-hydrody-
namic turbulence (Mhd), and a transitional boundary layer
(Tra). Since turbulence contains structures of interest across
all length scales, we additionally randomly stride or interpo-
late the query points for scale factors in [0.25, 4] to create se-
quences of different physical size. One additional test set (SF)
via temporal translations is based on ScalarFlow (Eckert, Um,
and Thuerey 2019), consisting of 3D reconstructions of real
smoke plumes. Furthermore, method [B] is slightly modified
for two synthetic test sets: Instead of using a data repository,
we procedurally synthesize spatial fields: We employ linearly
moving randomized shapes (Sha), and randomized damped
waves (Wav) of the general form f(x) = cos(x) ∗ e−x. All
data was gathered in sequences with n = 10 at resolution
1283, and downsampled to 643 for computational efficiency
during training and evaluations.

Determining c For each calibrated sequence, we can now
more accurately estimate c. As c corresponds to the decor-
relation speed of the system, we choose Pearson’s distance
d∆i = 1− |PCC(s0, si)| as a distance proxy here. c is deter-
mine via standard unbounded least-squares optimization from
the similarity model in Eq. 3 as c = argminc

log(10c d∆+1)
log(10c+1) .

5 Learning a Distance Function
Given the calibrated sequences s of different physical sys-
tems with elements s0, s1, . . . , sn, the corresponding value
of c, and the pairwise physical target distance sequence
ws = (j − i)/n, we can now formulate a semi-supervised
learning problem: We train a neural network m that receives
pairs from s as an input, and outputs scalar distances d for
each pair. These predictions are trained against ground truth
distances g = log(10c ws+1)

log(10c+1) . Note that g originates from the
sequence order determined by our data generation approach,
transformed with a non-linear transformation according to
the entropy-based similarity model. This technique incorpo-
rates the underlying physical behavior by accounting for the

decorrelation speed over the sequence, compared to adding
variations in a post-process (as commonly done in the domain
of images, e.g. by Ponomarenko et al. (2015)). To train the
metric network, the correlation loss function in Eq. 4 below
compares d to g and provides gradients.

Network Structure For our method, we generally follow
the established Siamese network structure, that was originally
proposed for 2D domains (Zhang et al. 2018): First, two in-
puts are embedded in a latent space using a CNN as a feature
extractor. The Siamese structure means that the weights are
shared, which ensures the mathematical requirements for a
pseudo-metric (Kohl, Um, and Thuerey 2020). Next, the fea-
tures from all layers are normalized and compared with an
element-wise comparison like an absolute or squared differ-
ence. Finally, this difference is aggregated with sum, mean,
and learned weighted average functions. To compute the pro-
posed VolSiM metric that compares inherently more complex
3D data, changes to this framework are proposed below.

Multiscale Network Scale is important for a reliable simi-
larity assessment, since physical systems often exhibit self-
similar behavior that does not significantly change across
scales, as indicated by the large number of dimensionless
quantities in physics. Generally, scaling a data pair should
not alter its similarity, and networks can learn such an invari-
ance to scale most effectively by processing data at different
scales. One example where this is crucial is the energy cas-
cade in turbulence (Pope 2000), which is also analyzed in our
case study below. For learned image metrics, this invariance
is also useful (but less crucial), and often introduced with
large strides and kernels in the convolutions, e.g. via a feature
extractor based on AlexNet (Zhang et al. 2018). In fact, our
experiments with similar architectures showed, that models
with large strides and kernels generally perform better than
models that modify the scale over the course of the network
to a lesser extent. However, we propose to directly encode
this scale structure in a multiscale architecture for a more
accurate similarity assessment, and a network with a smaller
resource footprint.

Fig. 3 shows the proposed fully convolutional network:
Four scale blocks individually process the input on increas-
ingly smaller scales, where each block follows the same layer
structure, but deeper blocks effectively cover a significantly
larger volume due to the reduced input resolutions. Deeper
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Concatenation

2x2x2 AvgPool 
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5x5x5 Conv. 5x5x5 Conv. 3x3x3 Conv. 3x3x3 Conv.ReLUReLU ReLU

Figure 3: Standard Conv+ReLU blocks (bottom) are interwo-
ven with input and resolution connections (blue dotted and
red dashed), to form the combined network architecture (top)
with about 350k weights.



architectures can model complex functions more easily, so
we additionally include resolution connections from each
scale block to the next resolution level via concatenation.
Effectively, the network learns a mixture of connected deep
features and similar representations across scales as a result.

Training and Evaluation To increase the model’s robust-
ness during training, we used the following data augmenta-
tions for each sequence: the data is normalized to [−1, 1],
and together randomly flipped and rotated in increments of
90° around a random axis. The velocity channels are ran-
domly swapped to prevent directional biases from some sim-
ulations, while scalar data is extended to the three input
channels via repetition. For inference, only the normalization
operation and the repetition of scalar data is performed. The
final metric model was trained with the Adam optimizer with
a learning rate of 10−4 for 30 epochs via early stopping. To
determine the accuracy of any metric during inference in
the following, we compute the SRCC between the distance
predictions of the metric d and the ground truth ws, where a
value closer to 1 indicates a better reconstruction.5

Loss Function Given predicted distances d and a ground
truth g of size n, we train our metric networks with the loss

L(d, g) = λ1(d− g)2 + λ2(1− r)

where r =

∑n
i=1(di − d̄) (gi − ḡ)√∑n

i=1(di − d̄)2
√∑n

i=1(gi − ḡ)2
. (4)

consisting of a weighted combination of an MSE and an
inverted correlation term r, where d̄ and ḡ denote the mean.
While the formulation follows existing work (Kohl, Um, and
Thuerey 2020), it is important to note that g is computed by
our similarity model from Sec. 3, and below we introduce
a slicing technique to apply this loss formulation to high-
dimensional data sets.

To successfully train a neural network, Eq. 4 requires a
trade-off: A large batch size b is useful to improve training
stability via less random gradients for optimization. Similarly,
a sufficiently large value of n is required to keep the correla-
tion values accurate and stable. However, with finite amounts
of memory, choosing large values for n and b is not possible
in practice. Especially so for 3D cases, where a single sample
can already be memory intensive. In general, n is implicitly
determined by the length of the created sequences via the
number of possible pairs. Thus, we provide an analysis how
the correlation can be approximated in multiple steps for a
fixed n, to allow for increasing b in return. In the following,
the batch dimension is not explicitly shown, but all expres-
sions can be extended with a vectorized first dimension. The
full distance vectors d and g are split in slices with v ele-
ments, where v should be a proper divisor of n. For any slice
k, we can compute a partial correlation rk with

rk =

∑k+v
i=k (di − d̄) (gi − ḡ)√∑k+v

i=k (di − d̄)2
√∑k+v

i=k (gi − ḡ)2
. (5)

5This is equivalent to SRCC(d, g), since the SRCC measures
monotonic relationships and is not affect by monotonic transforma-
tions, but using ws is more efficient and has numerical benefits.
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Figure 4: Combined validation and test performance for dif-
ferent batch sizes b and slicing values v (markers), and the
usage of running sample mean RM and correlation aggrega-
tion AG (colors).

Note that this is only an approximation, and choosing larger
values of v for a given b is always beneficial, if sufficient
memory is available. For all slices, the gradients are accu-
mulated during backpropagation since other aggregations
would required a computational graph of the original, im-
practical size. Eq. 5 still requires the computation of the
means d̄ and ḡ as a pre-process over all samples. Both can
be approximated with the running means d̃ and g̃ for effi-
ciency (RM ). For small values of v, the slicing results in
very coarse, unstable correlation results. To alleviate that, it
is possible to use a running mean over all previous values
r̃k = (1/k)(rk +

∑k−1
l=1 rl). This aggregation (AG) can sta-

bilize the gradients of individual rk as they converge to the
true correlation value.

Fig. 4 displays the resulting performance on our data, when
training with different combinations of b, v, RM , and AG.
All models exhibit similar levels of memory consumption
and were trained with the same random training seed. When
comparing models with and without RM both are on par
in most cases, even though computation times for a running
mean are about 20% lower. Networks with and without AG
generalize similarly, however, models with the aggregation
exhibit less fluctuations during optimization, leading to an
easier training process. Overall, this experiment demonstrates
that choosing larger v consistently leads to better results
(marker shape), so more accurate correlations are beneficial
over a large batch size b in memory-limited scenarios. Thus,
we use b = 1 and v = 55 for the final model.

6 Results
We compare the proposed VolSiM metric to a variety of ex-
isting methods in the upper section of Tab. 1. All metrics
were evaluated on the volumetric data from Sec. 4, which
contain a wide range of test sets that differ strongly from the
training data. VolSiM consistently reconstructs the ground
truth distances from the entropy-based similarity model more
reliably than other approaches on most data sets. As expected,
this effect is most apparent on the validation sets since their
distribution is closest to the training data. But even on the
majority of test sets with a very different distribution, Vol-
SiM is the best performing or close to the best performing
metric. Metrics without deep learning often fall short, in-
dicating that they were initially designed for different use
cases, like SSIM (Wang et al. 2004) for images, or variation



Validation data sets Test data sets

Simulated Simulated Generated JHTDBa SFb c

Metric Adv Bur Liq Smo AdvD LiqN Sha Wav Iso Cha Mhd Tra SF All

MSE 0.61 0.70 0.51 0.68 0.77 0.76 0.75 0.65 0.76 0.86 0.80 0.79 0.79 0.70
PSNR 0.61 0.68 0.52 0.68 0.78 0.76 0.75 0.65 0.78 0.86 0.81 0.83 0.79 0.73
SSIM 0.75 0.68 0.49 0.64 0.81 0.80 0.76 0.88 0.49 0.55 0.62 0.60 0.44 0.61
VI 0.57 0.69 0.43 0.60 0.69 0.82 0.67 0.87 0.59 0.76 0.68 0.67 0.41 0.62
LPIPS (2D) 0.63 0.62 0.35 0.56 0.76 0.62 0.87 0.92 0.71 0.83 0.79 0.76 0.87 0.76
LSiM (2D) 0.57 0.55 0.48 0.71 0.79 0.75 0.93 0.97 0.69 0.86 0.79 0.81 0.98 0.81
VolSiM (ours) 0.75 0.73 0.66 0.77 0.84 0.88 0.95 0.96 0.77 0.86 0.81 0.88 0.95 0.85

CNNtrained 0.60 0.71 0.63 0.76 0.81 0.77 0.92 0.93 0.75 0.86 0.78 0.85 0.95 0.82
MSrand 0.57 0.66 0.45 0.69 0.76 0.75 0.80 0.78 0.74 0.86 0.80 0.82 0.84 0.74
CNNrand 0.52 0.66 0.49 0.69 0.77 0.70 0.93 0.96 0.74 0.85 0.79 0.83 0.95 0.81
MSidentity 0.75 0.71 0.68 0.73 0.83 0.85 0.87 0.96 0.74 0.87 0.77 0.87 0.94 0.82
MS3 scales 0.70 0.69 0.70 0.73 0.83 0.82 0.95 0.94 0.76 0.87 0.80 0.88 0.93 0.83
MS5 scales 0.78 0.72 0.78 0.78 0.81 0.90 0.94 0.93 0.75 0.85 0.77 0.88 0.93 0.82
MSadded Iso 0.73 0.72 0.77 0.79 0.84 0.84 0.92 0.97 [0.79] 0.87 0.80 0.86 0.97 0.84
MSonly Iso 0.58 0.62 0.32 0.63 0.78 0.65 0.72 0.92 [0.82] 0.77 0.86 0.79 0.65 0.75
a Johns Hopkins Turbulence DB (Perlman et al. 2007) b ScalarFlow (Eckert, Um, and Thuerey 2019) c Combined test data sets

Table 1: Top: performance comparison of different metrics for 3D data via the SRCC, where values closer to 1 indicate a better
reconstruction of the ground truth distances (bold+underlined: best method for each data set, underlined: within a 0.01 margin of
the best performing). Bottom: ablation study of the proposed method (brackets: advantage due to different training data).

of information VI (Meilă 2007) for clustering. The strictly
element-wise metrics MSE and PSNR exhibit almost identical
performance, and both work poorly on a variety of data sets.
As the learning-based methods LPIPS (Zhang et al. 2018)
and LSiM (Kohl, Um, and Thuerey 2020) are limited to two
dimensions, their assessments in Tab. 1 are obtained by av-
eraging sliced evaluations for all three spatial axes. Both
methods show improvements over the element-wise metrics,
but are still clearly inferior to the performance of VolSiM.
This becomes apparent on our aggregated test sets displayed
in the All column, where LSiM results in a correlation value
of 0.81, compared to VolSiM with 0.85. LSiM can only come
close to VolSiM on less challenging data sets where corre-
lation values are close to 1 and all learned reconstructions
are already highly accurate. This improvement is comparable
to using LPIPS over PSNR, and represents a significant step
forward in terms of a robust similarity assessment.

The bottom half of Tab. 1 contains an ablation study of the
proposed architecture MS, and a simple CNN model. This
model is similar to an extension of the convolution layers of
AlexNet (Krizhevsky, Sutskever, and Hinton 2017) to 3D, and
does not utilize a multiscale structure. Even though VolSiM
has more than 80% fewer weights compared to CNNtrained,
it can fit the training data more easily and generalizes bet-
ter for most data sets in Tab. 1, indicating the strengths of
the proposed multiscale architecture. The performance of un-
trained models CNNrand and MSrand confirm the findings from
Zhang et al. (2018), who also report a surprisingly strong
performance of random networks. We replace the non-linear
transformation of ws from the similarity model with an iden-
tity transformation for MSidentity during training, i.e. only the
sequence order determines g. This consistently lowers the
generalization of the metric across data sets, indicating that

well calibrated sequences as well as the similarity model are
important for the similarity assessment. Removing the last
resolution scale block for MS3 scales overly reduces the capac-
ity of the model, while adding another block for MS5 scales is
not beneficial. In addition, we also investigate two slightly
different training setups: for MSadded Iso we integrate addi-
tional sequences created like the Iso data in the training,
while MSonly Iso is exclusively trained on such sequences.
MSadded Iso only slightly improves upon the baseline, and
even the turbulence-specific MSonly Iso model does not con-
sistently improve the results on the JHTDB data sets. Both
cases indicate a high level of generalization for VolSiM, as it
was not trained on any turbulence data.

Figure 5: Distance deviation from the mean prediction over
differently rotated (left) and scaled (right) inputs for a simple
CNN and the proposed multiscale model.

Transformation Invariance Physical systems are often
characterized by Galilean invariance (McComb 1999), i.e.
identical laws of motion across inertial frames. Likewise,
a metric should be invariant to transformations of the in-
put, meaning a constant distance output when translating,
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Figure 6: Top: Analysis of forced isotropic turbulence across three time spans. The high SRCC values indicate strong agreement
between a traditional correlation evaluation and VolSiM. Bottom: Examples from the sequence, visualized via a mean projection
along the x-axis and color-coded channels.

scaling, or rotating both inputs. Element-wise metrics fulfill
these properties by construction, but our Siamese network
structure requires an equivariant feature representation that
changes along with input transformations to achieve them.
As CNN features are translation equivariant by design (apart
from boundary effects and pooling), we empirically examine
rotation and scale invariance for our multiscale metric and
a standard Conv+ReLU model on a fixed set of 8 random
data pairs from each data set. For the rotation experiment,
we rotate the pairs in steps of 5° around a random coordinate
axis. The empty volume inside the original frame is filled
with a value of 0, and data outside the frame is cropped. For
scaling, the data is bilinearly up- or downsampled according
to the scale factor, and processed fully convolutionally.

In Fig. 5, the resulting distance deviation from the mean
of the predicted distances is plotted for rotation and scaling
operations. The optimal result would be a perfectly equal
distance with zero deviation across all transformations. Com-
pared to the model CNNtrained, it can be observed that VolSiM
produces less deviations overall, and leads to significantly
smoother and more consistent distance curves, across scales
and rotations as shown in Fig. 5. This is caused by the mul-
tiscale architecture, which results in a more robust internal
feature representation, and thus higher stability across small
transformations. Note that we observe scale equivariance
rather than invariance for VolSiM, i.e. a mostly linear scaling
of the distances according to the input size. This is most likely
caused by a larger spatial size of the fully convolutional fea-
tures. Making a scale equivariant model fully invariant would
require a form of normalization, which is left for future work.

Case Study: Turbulence Analysis As a particularly chal-
lenging test for generalization, we further perform a case
study on forced isotropic turbulence that resembles a po-
tential real-world scenario for our metric in Fig. 6. For this
purpose, fully resolved raw DNS data over a long temporal
interval from the isotropic turbulence data set from JHTDB is
utilized (see bottom of Fig. 6). The 10243 domain is filtered
and reduced to a size of 1283 via strides, meaning VolSiM is
applied in a fully convolutional manner, and has to generalize
beyond the training resolution of 643. Three different time
spans of the simulation are investigated, where the long span

also uses temporal strides. Traditionally, turbulence research
makes use of established two-point correlations to study such
cases (Pope 2000). Since we are interested in a comprehen-
sive spatial analysis instead of two single points, we can make
use of Pearson’s distance that corresponds to an aggregated
two-point correlation on the full fields to obtain a physical
reference evaluation in this scenario.

Fig. 6 displays normalized distance values between the
first simulation time step t1 and each following step ti. Even
though there are smaller fluctuations, the proposed VolSiM
metric (blue) behaves very similar to the physical reference
of aggregated two-point correlations (red dashed) across all
time spans. This is further emphasized by the high SRCC
values between both sets of trajectories, even for the chal-
lenging long time span. Our metric faithfully recovers the
correlation-based reference, despite not having seen any tur-
bulence data at training time. Overall, this experiment shows
that the similarity model integrates physical concepts into
the comparisons of VolSiM, and indicates the generalization
capabilities of the multiscale metric to new cases.

7 Conclusion
We presented the multiscale CNN architecture VolSiM, and
demonstrated its capabilities as a similarity metric for vol-
umetric simulation data. A similarity model based on the
behavior of entropy in physical systems was proposed and
utilized to learn a robust, physical similarity assessment. Dif-
ferent methods to compute correlations inside a loss func-
tion were analyzed, and the invariance to scale and rotation
transformations investigated. Furthermore, we showed clear
improvements upon elementwise metrics as well as exist-
ing learned approaches like LPIPS and LSiM in terms of an
accurate similarity assessment across our data sets.

The proposed metric potentially has an impact on a broad
range of disciplines where volumetric simulation data arises.
An interesting area for future work is designing a metric
specifically for turbulence simulations, first steps towards
which were taken with our case study. Additionally, inves-
tigating learning-based methods with features that are by
construction equivariant to rotation and scaling may lead to
further improvements in the future.
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Boltzmann, L. 1866. Über Die Mechanische Bedeutung Des
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APPENDIX: Learning Similarity Metrics for Volumetric Simulations with Multiscale CNNs

In the following, additional details for the proposed VolSiM
metric are provided: App. A contains implementation details
regarding the training and the metric model setup, and App. B
features generation details and visualizations for all our data
sets, as well as an analysis of the data distribution resulting
from the data generation. The training stability for the loss
experiment is investigated in App. C, and details for the
experimental setup of the ablation study models are given
in App. D. Afterwards, App. E contains additional ablation
studies, and details regarding the turbulence case study can
be found in App. F.

A Implementation Details
The training and evaluation process of the metric was im-
plemented in PyTorch (Paszke et al. 2019), while the data
was simulated and collected with specialized solvers and data
interfaces as described in App B. The data acquisition, train-
ing, and metric evaluation was performed on a server with
an Intel i7-6850 (3.60Ghz) CPU and an NVIDIA GeForce
GTX 1080 Ti GPU. It took about 38 hours of training to fully
optimize the final VolSiM model for the data sequences with
a spatial resolution of 643.

In addition to the multiscale feature extractor network, the
following operations were used for the Siamese architecture
of the metric: Each feature map is normalized via a mean
and standard deviation normalization to a standard normal
distribution. The mean and standard deviation of each feature
map is computed in a pre-processing step for the initializa-
tion of the network over all data samples. Both values are
fixed for training the metric afterwards. To compare both sets
of feature maps in the latent space, a simple element-wise,
squared difference is employed. To keep the mathematical
metric properties, this also requires a square root operation
before the final distance output. The spatial squared feature
map differences are then aggregated along all dimensions
into a scalar distance output. Here, we used a single learned
weight with dropout for every feature map, to combine them
to a weighted average per network layer. The activations of
the average feature maps are spatially combined with a sim-
ple mean, and summed over all network layers afterwards.
This process of normalizing, comparing, and aggregating
the feature maps computed by the feature extractor follows
previous work (Kohl, Um, and Thuerey 2020; Zhang et al.
2018).

The weights to adjust the influence of each feature map are
initialized to 0.1, all other weights of the multiscale feature
extractor are initialized with the default PyTorch initialization.
For the final loss, the MSE term was weighted with λ1 = 1.0,
while the correlation term was weighted with λ2 = 0.7.

B Data Set Details
In the following sections, the details underlying each data
set are described. Tab. 3 contains a summary of simulator,
simulation setup, varied parameters, noise integration, and
used fields for the simulated and generated data sets. Tab. 4

features a summary of the collected data sets, with repository
details, jitter and cutout settings, and spatial and temporal
∆ values. Both tables also contain the number of sequences
created for training, validation, and testing for every data
source. These values only apply for the general metric setup,
and changes for the ablation study models can be found in
App. D below.

B.1 Advection-Diffusion and Burgers’ Equation

In its simplest form, the transport of matter in a flow can be
described by the two phenomena of advection and diffusion.
Advection describes the movement of a passive quantity in-
side a velocity field over time, and diffusion describes the
process of dissipation of this quantity due to the second law
of thermodynamics.

∂d

∂t
= ν∇2d− u · ∇d (6)

Eq. 6 is the simplified Advection-Diffusion equation with
constant diffusivity and no sources or sinks, where u denotes
the velocity, d is a scalar passive quantity that is transported,
and ν is the diffusion coefficient or kinematic viscosity.

Burgers’ Equation in Eq. 7 is similar to the Advection-
Diffusion equation, but it describes how the velocity field
itself changes over time with advection and diffusion. The dif-
fusion term can also be interpreted as a viscosity, that models
the resistance of the material to deformations. Furthermore,
this variation can develop discontinuities (also called shock
waves). Here, u also denotes the velocity and ν the kinematic
viscosity or diffusion coefficient.

∂u

∂t
= ν∇2u− u · ∇u (7)

To solve both PDEs, the differentiable fluid framework
PhiFlow (Holl, Thuerey, and Koltun 2020) was used. The
solver utilizes a Semi-Lagrangian advection scheme, and
we chose periodic domain boundary conditions to allow for
the usage of a Fourier space diffusion solver. We introduced
additional continuous forcing to the simulations by adding
a force term f to the velocity after every simulation step.
Thus, f depends on the time steps t, that is normalized by
division of the simulation domain size beforehand. For Adv,
Bur, and AdvD, we initialized the fields for velocity, density,
and force with multiple layered parameterized sine functions.
This leads to a large range of patterns across multiple scales
and frequencies when varying the sine parameters.

ux(p) = sum
(
fx
1 +

4∑

i=1

fx
i+1

∗ sin(2iπp+ ci o
x
(i+1mod 2)+1)

)

where c = (1, 1, 0.4, 0.3)

(8)



fx(p, t) = sum
(
fx
6 ∗ (1 + fx

6 ∗ 20)

∗
4∑

i=1

fx
i+1 ∗ sin(2iπp̃+ ci o

x
(imod 2)+1)

)

where p̃ = p+ fx
7 ∗ 0.5 + fx

7 ∗ sin(3t)
and c = (0, 1, 1, 0.7)

(9)

d(p) = sum
( {x,y,z}∑

i

sin(f i
d ∗ 24πpi + oid)

)
(10)

Eq. 8, 9, and 10 show the layered sine functions in ux(p),
fx(p), and d(p) for a spatial grid position p ∈ R3. The sum
operation denotes a sum of all vector elements here, and all
binary operations on vectors and scalars use broadcasting of
the scalar value to match the dimensions. Eq. 11 shows the
definition of the function parameters used above, all of which
are randomly sampled based on the simulation seed for more
diverse simulations.

fx
1 ∼ U(−0.2, 0.2)3

fx
2 ∼ U(−0.2, 0.2)3

fx
3 ∼ U(−0.15, 0.15)3

fx
4 ∼ U(−0.15, 0.15)3

fx
5 ∼ U(−0.1, 0.1)3

fx
6 ∼ U(0.0, 0.1)3

fx
7 ∼ U(−0.1, 0.1)3

fx,y,z
d ∼ {1, 1

2
, 1
3
, 1
4
, 1
5
, 1
6
}3

ν ∼ U(0.0002, 0.1002)
ox
1 ∼ U(0, 100)3

ox
2 ∼ U(0, 100)3

ox,y,z
d ∼ U(0, 100)3

(11)

Note that ν was multiplied by 0.1 for Bur. The remaining ve-
locity and force components uy(p), uz(p), fy(p), and fz(p)
and corresponding parameters are omitted for brevity here,
since they follow the same initialization pattern as ux(p) and
fx(p). Tab. 3 shows the function parameters that were varied,
by using the random initializations and adjusting one of them
in linear steps to create a sequence. The main difference be-
tween the Advection-Diffusion training data and the test set
is the method of noise integration: For Adv it is integrated
into the simulation velocity, while for AdvD it is added to
the density field instead. The amount of noise added to the
velocity for Bur and Adv and to the density for AdvD was
varied in isolation as well.

B.2 Navier-Stokes Equations
The Navier-Stokes Equations fully describe the behavior of
fluids like gases and liquids, via modelling advection, vis-
cosity, and pressure effects, as well as mass conservation.
Pressure can be interpreted as the force exerted by surround-
ing fluid mass at a given point, and the conservation of mass
means that the fluid resists compression.

∂u

∂t
+ (u · ∇)u = −∇P

ρ
+ ν∇2u+ g (12)

∇ · u = 0. (13)

Eq. 12 describes the conservation of momentum, and Eq. 13
describes mass conservation. Again, u denotes the velocity,
P is the pressure, ρ is the fluids density, ν is the kinematic
viscosity, and g denotes external forces like gravity.

Smoke To create the smoke data set Smo, the fluid frame-
work MantaFlow (Thuerey and Pfaff 2018) that provides
a grid-based Eulerian smoke solver for the Navier-Stokes
Equations was used. It is based on a Semi-Lagrangian ad-
vection scheme, and on the conjugate gradient method as a
pressure solver. The simulation setup consists of a cylindrical
smoke source at the bottom of the domain with a fixed noise
pattern initialization to create more diverse smoke plumes.
Furthermore, a constant spherical force field ff is positioned
over the source. This setup allows for a variation of multiple
simulation parameters, like the smoke buoyancy, the source
position and different force field settings. They include posi-
tion, rotation, radius and strength. In addition, the amount of
added noise to the velocity can also be varied in isolation.

Liquid Both liquid data sets, Liq and LiqN, were cre-
ated with a liquid solver in MantaFlow. It utilizes the hybrid
Eulerian-Lagrangian fluid implicit particle method (Zhu and
Bridson 2005), that combines the advantages of particle and
grid-based liquid simulations for reduced numerical dissipa-
tion. The simulation setup consists of two liquid cuboids of
different shapes, similar to the common breaking dam setup.
After 25 simulation time steps a liquid drop is added near the
top of the simulation domain, and it falls down on the water
surface that is still moving. Here, the external gravity force
as well as the drops position and radius are varied to create
similarity sequences. As for the smoke data, a modification of
the amount of noise added to the velocity was also employed
as a varied parameter. The main difference between the liquid
training data and the test set is the method of noise integra-
tion: For Liq it is integrated into the simulation velocity,
while for LiqN it is overlayed on the simulation background.

B.3 Generated Data
To create the shape data set Sha and the wave data set Wav,
a random number of straight paths are created by randomly
generating a start and end point inside the domain. It is en-
sured that both are not too close to the boundaries and that
the path has a sufficient length. The intermediary positions
for the sequence are a result of linearly interpolating on these
paths. The positions on the path determine the center for the
generated objects that are added to an occupancy marker grid.
For both data sets, overlapping shapes and waves are com-
bined additively, and variations with and without overlayed
noise to the marker grid were created.

Shapes For Sha, random shapes (box or sphere) are added
to the positions, where the shape’s size is a random fraction
of the path length, with a minimum and maximum constraint.
The created shapes are then applied to the marker grid either
with or without smoothed borders.

Waves For Wav, randomized volumetric damped cosine
waves are added around the positions instead. The marker
grid value m at point p for a single wave around a center c is
defined as

m(p) = cos(w ∗ p̃) ∗ e−(3.7p̃/r) where p̃ = ∥p− c∥2 .
Here, r is the radius given by the randomized size that is
computed as for Sha, and w ∼ U(0.1, 0.3) is a randomized



waviness value, that determines the frequency of the damped
wave.

B.4 Collected Data
The collected data sets Iso, Cha, Mhd, and Tra are based
on different subsets from the Johns Hopkins Turbulence
Database JHTDB (Perlman et al. 2007), that contain dif-
ferent types of data from direct numerical simulations (DNS).
In these simulations, all spatial scales of turbulence up to
the dissipative regime are resolved. The data set SF is based
on the ScalarFlow data (Eckert, Um, and Thuerey 2019),
that contains dense 3D velocity fields of real buoyant smoke
plumes, created via multi-view reconstruction technique.

JHTDB The JHTDB subsets typically contain a single
simulation with a very high spatial and temporal resolution
and a variety of fields. We focus on the velocity fields, since
turbulent flow data is especially complex and potentially
benefits most from a better similarity assessment. We can
mainly rely on using temporal sequences, and only need to
add spatial jitters in some cases to increase the difficulty. As
turbulence generally features structures of interest across all
length scales, we create sequences of different spatial scales
for each subset. To achieve this, we randomly pick a cutout
scale factor s. If s = 1, we directly use the native spatial
discretization provided by the database. For s > 1 we stride
the spatial query points of the normal cubical cutout by s after
filtering the data. For s < 1 the size of the cubical cutout is
reduced by a factor of s in each dimension, and the cutout is
interpolated to the full spatial size of 1283 afterwards. Among
other details, Tab. 4 shows the cutout scale factors, as well as
the corresponding random weights.

ScalarFlow Since 100 reconstructions of different smoke
plumes are provided in ScalarFlow, there is no need to add
additional randomization to create multiple test sequences.
Instead, we directly use each reconstruction sequence to cre-
ate one similarity sequence in equal temporal steps. The only
necessary pre-processing step is cutting off the bottom part of
domain that contains the smoke inflow, since it is frequently
not fully reconstructed. Afterwards, the data is interpolated
to the full spatial size of 1283 to match the other data sets.

B.5 Additional Example Sequences
Fig. 9, 10, and 11 show multiple full example sequences from
all our data sets. In every sequence, the leftmost image is the
baseline field. Moving further to the right, the change of one
initial parameter increases for simulated data sets, and the
spatio-temporal position offset increases for generated and
collected data. To plot the sequences, the 3D data is projected
along the z-axis to 2D via a simple mean operation. This
means, noise that was added to the data or the simulation is
typically significantly less obvious due to statistical averaging
in the projection. Velocity data is directly mapped to RGB
color channels, and scalar data is shown via different shades
of gray. Unless note otherwise, the data is jointly normalized
to [0, 1] for all channels at the same time, via the overall
minimum and maximum of the data field.

B.6 Data Distribution
There are many independent factors that influence the actual
difficulty of the created data sequences. For example, our
iterative data generation methods only calibrate ∆ with the
help of proxy functions. Furthermore, the clear correlation
thresholds are only used for a small set of sequences, instead
of sampling every sequence based on them.

0
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Figure 7: Normalized MSE correlation histograms of training
(orange) and validation data (blue) with a bin size of 0.05, all
of which roughly follow a truncated normal distribution.

As a result, the computed PCC values from the MSE (see
Fig. 2) on the full data sets exhibit a natural, smooth distri-
bution with controllable difficulty, instead of introducing an
artificial distribution with hard cutoffs. According to the cen-
tral limit theorem and taking into account that correlations
have an upper bound of 1, we expect the PCC values to follow
a truncated normal distribution. Intuitively, this corresponds
to a distribution of trajectories with different curvature in the
similarity model in Fig. 1. In fact, we empirically determined
that only training data distributions in the PCC space which
reasonably closely follow a truncated normal distribution
with a sufficiently positive peak, result in a successful train-
ing of our model. We assume, that cutoffs or significantly
different distributions indicate unwanted biases in the data,
which prevented effective learning in our experiments. Fig. 7
shows normalized correlation histograms of our training and
validation data sets, all of which roughly follow this desired
truncated normal distribution.

C Training Stability for Loss Experiment
To further analyze the resulting stability of different variants
of the loss investigated in Sec. 5, Fig. 8 shows training trajec-
tories of multiple models. Displayed are the direct training
loss over the training iterations, i.e. one loss value per batch,
and a smoothed version via an exponential weighted moving
average computed with α = 0.05, corresponding to a window
size of 40. The models are color-coded according to Fig. 4,
and were trained with different batch sizes b, slicing values
v, usage of the running sample mean RM , and usage of the
correlation aggregation AG. Note that the models were gen-
erally trained with the same training seed, meaning the order
of samples is very similar across all runs (only with potential
deviations due to race conditions and GPU processing).
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Figure 8: Loss curves from the loss function analysis in Fig. 4 for different models. Shown are the raw losses per batch over all
training iterations (lighter line), and an exponential weighted moving average with α = 0.05 (darker line) for better visual clarity.

In Fig. 8, it can be observed that models trained with lower
batch sizes achieve lower training losses, leading to the better
generalization on test and validation sets in Fig. 4. Using no
AG leads to a less stable training procedure and a higher
loss during most of training, especially for lower batch sizes.
Occasionally, even large loss spikes occur that eradicate most
training progress.

D Ablation Study Details
In the following, details for the ablation study models in
Sec. 6 are provided. The proposed VolSiM metric uses the
multiscale architecture MS described in Sec. 5 as a feature ex-
tractor. For all models, the general training setup mentioned
in App. A stays identical, apart from: 1) removing the con-
tribution of the entropy-based similarity model, 2) changes
to the feature extractor, 3) a different feature extractor, 4) the
training amount, or 5) the training data.

No Similarity Model The MSidentity model does not di-
rectly make use of the similarity model based on entropy.
For that, the logarithmic transformation of ws = (j − i)/n
according to the similarity model is replaced with an identity
transformation during training. This corresponds to linear
ground truth distances according to the order of each se-
quence determined by our data generation. Note that this
simplified network version is slightly more efficient as the
computation of the parameter c can be omitted. However, pre-
computing these values for all sequences is computationally
very light compared to training the full metric network.

Changes to MS Architecture For MS3 scales, the last scale
block is removed, meaning the architecture from Fig. 3 ends
with the 1/4 resolution level, while the 1/8 resolution level is
omitted. For the MS5 scales model, one additional scale block
is added. In Fig. 3, this corresponds to a 1/16 resolution
level with a 16× 16× 16 AvgPool and a scale block with 64
channels.

Simple CNN Feature Extractor The CNNtrained model em-
ploys an entirely different feature extractor network, similar
to the classical AlexNet architecture (Krizhevsky, Sutskever,
and Hinton 2017). It consists of 5 layers, each with a 3D
convolution followed by a ReLU activation. The kernel sizes
(12 - 5 - 3 - 3 - 3) decrease along with the strides (4 - 1 -
1 - 1 - 1), while the number of features first increase, then
decreases again (32 - 96 - 192 - 128 - 128). To create some
spatial reductions, two 4× 4× 4 MaxPools with stride 2 are

included before the second and third convolution. The nor-
malization and aggregation of the resulting feature maps is
performed as described in App. A, in the same way as for the
proposed feature extractor network. As a result, CNNtrained
can also be applied in a fully convolutional manner for the
scaling invariance experiment in Fig. 5.

Random Models For the random models CNNrand and
MSrand, the corresponding feature extractor along with the
aggregation weights are only initialized and not trained. How-
ever, to normalize every feature to a standard normal distri-
bution, the training data is processed once to determine the
feature mean and standard deviation before evaluating the
models, as detailed in App. A.

Different Training Data For the MSadded Iso model, we
created 400 additional sequences from the JHTDB according
to the Iso column in Tab. 4, that are added to the other train-
ing data. Note that they utilize different random seeds than the
60 test sequences, so the Iso data set becomes an additional
validation set in Tab. 1. Similarly for the MSonly Iso model,
1000 sequences according to the Iso column in Tab. 4 were
collected. They replace all other training data from the origi-
nal model, meaning the Iso data set becomes a validation
set, and Adv, Bur, Liq, and Smo become further test sets in
Tab. 1. For consistency, the All column in Tab. 1 still reports
the combined values of the original test sets for both cases.

E Additional Ablations
To further investigate our method, we perform three addi-
tional ablations in the following. The first ablation focuses
on the benefits of the resolution skip connections in our mul-
tiscale feature extractor. The other two replace the multiscale
aspect in different ways, to demonstrate the robustness and
memory efficiency of the proposed architecture. Additionally,
directly using Pearson’s distance on our data is compared to
an analysis using the MSE. Tab. 2 shows the resulting SRCC
values for these models and the corresponding baselines on
our data sets, which are computed as for Tab. 1.

No Skip Connections We compare the VolSiM model as
proposed in the main paper with MSno skip that does not make
use of the resolution skip connections (red dashed arrows in
Fig. 3). This means each resolution is isolated, and sharing
information across features of different levels is more diffi-
cult, even though all features from each layer are still used for
the final distance computation. The results in the first block



Validation data sets Test data sets

Metric Adv Bur Liq Smo AdvD LiqN Sha Wav Iso Cha Mhd Tra SF All

VolSiM 0.75 0.73 0.66 0.77 0.84 0.88 0.95 0.96 0.77 0.86 0.81 0.88 0.95 0.85
MSno skip 0.80 0.70 0.78 0.75 0.86 0.88 0.80 0.95 0.76 0.86 0.78 0.86 0.91 0.82

MS4 scales 0.74 0.74 0.86 0.77 0.82 0.83 0.93 0.97 0.77 0.88 0.82 0.89 0.95 0.84
MS1 scale 0.73 0.71 0.78 0.75 0.83 0.76 0.91 0.96 0.73 0.87 0.78 0.88 0.94 0.82

MSwith pool 0.70 0.70 0.76 0.72 0.82 0.79 0.94 0.96 0.76 0.83 0.79 0.88 0.97 0.83
MSno pool 0.73 0.70 0.72 0.71 0.83 0.77 0.94 0.95 0.76 0.87 0.78 0.86 0.90 0.82

MSE 0.61 0.70 0.51 0.68 0.77 0.76 0.75 0.65 0.76 0.86 0.80 0.79 0.79 0.70
PCC 0.65 0.69 0.55 0.65 0.72 0.80 0.72 0.73 0.70 0.83 0.75 0.78 0.89 0.69

Table 2: Performance comparison of further ablation study models via the SRCC. Shown are a model where the resolution skip
connections in the feature extractor are omitted (top block), and two models without a multiscale architecture (second and third
block). The upper row in each block is the corresponding baseline. Furthermore, using Pearson’s distance directly as a metric is
compared to an MSE evaluation (bottom block).

in Tab. 2 show that removing skip connections simplifies
learning to some degree as the performance clearly increases
on two validation sets. However, the generalization to data
that is very different compared to the training distribution
becomes more difficult. This is especially obvious for the
data sets Sha and SF, both of which feature relatively large
visual changes. Interestingly, the effects on the Wav data set
with similar characteristics are only minor.

Singlescale Model To investigate the multiscale aspect of
our architecture, we removed all scale blocks at lower res-
olutions, such that only the component at the native input
resolution remains (see Fig. 3). To compensate for the lower
number of network parameters, we scale the number channels
in each layer by a factor of 11, leading to the rather shallow
but wide network MS1 scale with around 360k weights. The
original network structure MS4 scales with the four scale blocks
reconstructs the ground truth more accurately for almost all
data sets as displayed in the middle block of Tab. 2. Further-
more, the proposed structure requires about five times less
memory during training.

No Pooling Layers A different approach to analyze the
multiscale aspect, is to eliminate all AvgPool layers and set
all convolution strides to 1 (also see Fig. 3). Here, no further
adjustments to the network are required as neither pooling
layers nor strides alter the number of network weights. The
resulting MSno pool model is only slightly worse compared to
the baseline, as indicated by bottom block in Tab. 2. However,
the MSwith pool model needs about ten times less memory
compared to the adjust variant during training due to the
significantly smaller feature sizes.

Note that for both ablations on the multiscale structure, the
training and test data resolution was reduced to 323. Further-
more, the number of channels in each layer for the MSwith pool
and MSno pool models was reduced by a factor of 0.5. Both
choices are motivated by memory limitations and are the rea-
son for the slightly different results across the three baseline
models in Tab. 2.

Further Element-wise Metrics The last block in Tab. 2
analyzes the performance of Pearson’s distance on our data

sets. Here, d is computed via di = 1 − |PCC(s0, si)| and
compared it to g via the SRCC in the same way as for the
other metrics. The resulting performance is overall quite
similar to an MSE evaluation, which is expected as Pearson’s
distance essentially still is an element-wise comparison, even
though it does take some general data statistics into account.

F Turbulence Case Study Details
For the case study in Sec. 6, the velocity field from the
isotropic1024coarse data set from the JHTDB (Perlman et al.
2007) is utilized. Instead of calibrating sequences according
to data generation approach and the similarity model, the
data is directly converted to three sequences of different time
spans without any randomization in this case. A spatial stride
of 8 is employed is employed for all cases, and to reduce
memory consumption an additional temporal stride of 20 is
used for the long time span only. The resulting sequences
exhibit a spatial resolution of 1283, with 40 frames for the
short span, 400 frames for medium span, and 200 frames
for the long span. Before further processing, each frame is
individually normalized to [−1, 1]. To create the results in
Fig. 6, the first simulation frame t1 is individually compared
to all following simulation frames ti via Pearson’s distance
(red dashed trajectory) and VolSiM (blue solid trajectory).
Note that VolSiM is applied fully convolutionally as it was
trained on 643 data, and has to generalize to 1283 here. For
both cases, the resulting distances are normalized to [0, 1]
to visually compare them more easily. The examples from
the sequences are visualized as described in App. B, while
projecting along the x-axis.
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Adv Bur Liq Smo AdvD LiqN Sha Wav

Sequences
train–val–test 398–57–0 408–51–0 405–45–0 432–48–0 0–0–57 0–0–30 0–0–60 0–0–60

Equation Eq. 6 Eq. 7 Eq. 12, 13 Eq. 12, 13 Eq. 6 Eq. 12, 13 — —

Simulator PhiFlowd PhiFlowd MantaFlowe MantaFlowe PhiFlowd MantaFlowe MantaFlowe MantaFlowe

Simulation
setup

layered
sines

layered
sines

breaking
dam + drop

rising
plume with
force field

layered
sines

breaking
dam + drop

random
shapes

random
damped
waves

Time steps 120 120 80 120 120 80 — —

Varied
aspects

f1, f2,
f3, f4,
f5, f7,

o1, o2, od,
noise

f1, f2,
f3, f4,
f5, f7,
o1, o2,
noise

dropx
dropy
dropz
droprad
gravx
gravy
gravz
noise

buoyx
buoyy
ffrot x
ffrot z
ffstr x

ffstr z

ffpos x

ffpos y

ffrad
sourcex
sourcey
noise

f1, f2,
f3, f4,
f5, f7,

o1, o2, od,
noise

dropx
dropy
dropz
droprad
gravx
gravy
gravz
noise

shape
position

wave
position

Noise
integration

added to
velocity

added to
velocity

added to
velocity

added to
velocity

added to
density

overlay on
non-liquid

overlay on
marker

overlay on
marker

Used fields density velocity
velocity

flags
levelset

density
pressure
velocity

density velocity marker marker

d PhiFlow (https://github.com/tum-pbs/PhiFlow) from Holl, Thuerey, and Koltun (2020) e MantaFlow (http://mantaflow.com/)
from Thuerey and Pfaff (2018)

Table 3: Data set detail summary for the simulated and generated data sets.

Iso Cha Mhd Tra SF

Sequences
train–val–test 0–0–60 0–0–60 0–0–60 0–0–60 0–0–100

Repository
JHTDB –
isotropic

1024coarse f

JHTDB –
channel f

JHTDB –
mhd1024 f

JHTDB –
transition bl f ScalarFlow g

Repository size h

s× t× x× y × z

1× 5028×
1024× 1024×

1024

1× 4000×
2048× 512×

1536

1× 1024×
1024× 1024×

1024

1× 4701×
10240× 1536×

2048

100× 150×
100× 178×

100 i

Temporal offset ∆t 180 37 95 25 13

Spatial offset ∆x,y,z 0 0 0 0 0

Spatial jitter 0 0 25 0 0

Cutout scales 0.25, 0.5,
0.75, 1, 2, 3, 4

0.25, 0.5,
0.75, 1, 2, 3, 4

0.25, 0.5,
0.75, 1, 2, 3, 4

0.25, 0.5,
0.75, 1, 2

1

Cutout scale random
weights

0.14, 0.14,
0.14, 0.16,

0.14, 0.14, 0.14

0.14, 0.14,
0.14, 0.16,

0.14, 0.14, 0.14

0.14, 0.14,
0.14, 0.16,

0.14, 0.14, 0.14

0.14, 0.14,
0.14, 0.30, 0.28

1

Used fields velocity velocity velocity velocity velocity
f JHTDB (http://turbulence.pha.jhu.edu/) from Perlman et al. (2007) g ScalarFlow (https://mediatum.ub.tum.de/1521788)
from Eckert, Um, and Thuerey (2019) h simulations s × time steps t × spatial dimensions x, y, z
i cut to 100× 150× 100× 160× 100 (removing 18 bottom values from y), since the smoke inflow is not fully reconstructed

Table 4: Data set detail summary for collected data sets.



Adv: Advection-Diffusion (2×density)

Bur: Burgers’ Equation (2×velocity)

Smo: Smoke (velocity, density, and pressure)

Liq: Liquid (velocity, leveset, and flags)

Figure 9: Example sequences of simulated training data, where each row features a full sequence from a different random seed.



AdvD: Advection-Diffusion with density noise (2×density)

LiqN: Liquid with background noise (2×velocity)

SF: ScalarFlow (2×velocity)

Sha: Shapes (2×marker, without and with noise)

Wav: Waves (2×marker, without and with noise)

Figure 10: Example sequences of simulated (top two data sets), collected (middle data set), and generated (bottom two data sets)
test data. Each row contains a full sequence from a different random seed. It is difficult to visually observe the background noise
in LiqN due the projection along the z-axis to 2D, and due to image compression.



Iso: Isotropic turbulence (3×velocity)

Cha: Channel flow (3×velocity)

Mhd: Magneto-hydrodynamic turbulence (3×velocity)

Tra: Transitional boundary layer (3×velocity)

Figure 11: Example sequences of collected test data from JHTDB, where each row shows a full sequence from a different random
seed. Notice the smaller cutout scale factor s for the middle example in each case. The predominant x-component in Cha is
separately normalized for a more clear visualization.
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