Benutzer: Gast  Login

Titel:

Multi-fidelity Constrained Optimization for Stochastic Black-Box Simulators

Dokumenttyp:
Konferenzbeitrag
Autor(en):
Kislaya Ravi; Atul Agrawal; Hans-Joachim Bungartz; Phaedon-Stelios Koutsourelakis
Abstract:
Constrained optimization of the parameters of a simulator plays a crucial role in a design process. These problems become challenging when the simulator is stochastic, computationally expensive, and the parameter space is high-dimensional. One can efficiently perform optimization only by utilizing the gradient with respect to the parameters, but these gradients are unavailable in many legacy, black-box codes. We introduce the algorithm Scout-Nd ( Stochastic Constrained Optimization for N dimensi...     »
Kongress- / Buchtitel:
Machine Learning and the Physical Sciences Workshop at the 37th conference on Neural Information Processing Systems (NeurIPS) December 15, 2023
Datum der Konferenz:
December 15, 2023
Jahr:
2023
Quartal:
4. Quartal
Jahr / Monat:
2023-12
Monat:
Dec
Reviewed:
ja
Sprache:
en
WWW:
https://ml4physicalsciences.github.io/2023/files/NeurIPS_ML4PS_2023_106.pdf
 BibTeX