Benutzer: Gast  Login
Originaltitel:
Reinforcement Learning for Autonomous Mobility on Demand Systems: Scalability via Multi-Agent Learning and Robustness via Risk-Sensitivity
Übersetzter Titel:
Reinforcement Learning für Autonome Mobility-on-Demand-Systeme: Skalierbarkeit durch Multi-Agent Learning und Robustheit durch Risikosensitivität
Autor:
Enders, Tobias
Jahr:
2024
Dokumenttyp:
Dissertation
Fakultät/School:
TUM School of Management
Institution:
Professur für Business Analytics and Intelligent Systems (Prof. Schiffer)
Betreuer:
Schiffer, Maximilian (Prof. Dr.)
Gutachter:
Schiffer, Maximilian (Prof. Dr.); Sutter, Tobias (Prof. Dr.)
Sprache:
en
Fachgebiet:
WIR Wirtschaftswissenschaften
TU-Systematik:
WIR 750; WIR 547
Kurzfassung:
This thesis presents novel algorithms and experimental results to make deep reinforcement learning for dispatching in autonomous mobility on demand systems scalable and robust against distribution shifts. Firstly, the thesis introduces a scalable combination of multi-agent Soft Actor-Critic and weighted bipartite matching which outperforms two state-of-the-art benchmarks. Secondly, it develops a risk-sensitive version of Soft Actor-Critic which is robust against distribution shifts.
Übersetzte Kurzfassung:
Diese Dissertation stellt neue Algorithmen und experimentelle Ergebnisse vor, um Deep Reinforcement Learning für das Dispatching in autonomen Mobility-on-Demand-Systemen skalierbar und robust gegen Verteilungsschocks zu machen. Erstens wird eine skalierbare Kombination von Multi-Agent Soft Actor-Critic und gewichtetem bipartitem Matching eingeführt, die zwei State-of-the-Art Benchmarks übertrifft. Zweitens wird eine risikosensitive Version von Soft Actor-Critic entwickelt, die robust gegen Verte...     »
WWW:
https://mediatum.ub.tum.de/?id=1743186
Eingereicht am:
29.05.2024
Mündliche Prüfung:
18.11.2024
Dateigröße:
1257564 bytes
Seiten:
99
Urn (Zitierfähige URL):
https://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20241118-1743186-1-4
Letzte Änderung:
06.12.2024
 BibTeX