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Abstract

With increasing urbanization, demand for personal intra-city mobility will continue to rise.
While privately owned cars are not a sustainable solution to serve these mobility needs, au-
tonomous mobility on demand (AMoD) systems promise to be an attractive alternative. In such
systems, a fleet of self-driving vehicles serves customers’ ad-hoc requests for point-to-point
transportation. To leverage the potential for increased efficiency due to centralized fleet con-
trol, advanced algorithms are necessary. The central decision to be made by these algorithms
is how to dispatch vehicles to requests. Deep reinforcement learning (DRL) is well suited
to learn an anticipative dispatching policy in a stochastic environment based on historic data.
However, standard DRL algorithms are not scalable to realistic AMoD system sizes. More-
over, the practical applicability of DRL is limited by a lack of robustness against (customer
demand) distribution shifts. This thesis aims to address these two challenges by contribut-
ing novel DRL algorithms, thereby facilitating the deployment of efficient and reliable AMoD
systems at scale in the future. It consists of an introduction with background information, a re-
view of related application-oriented and methodological literature, two methodological chapters
presenting novel algorithms and experimental results addressing the two aforementioned chal-
lenges, and a conclusion summarizing the main findings of the thesis and identifying directions
for future research.

The first methodological chapter considers the vehicle-to-request dispatching problem of a
profit-maximizing, central operator of an AMoD system. It introduces a novel combination
of multi-agent Soft Actor-Critic (SAC) with local rewards and weighted bipartite matching,
thereby factorizing the operator’s otherwise intractable action space while obtaining a glob-
ally coordinated decision for a large-scale system. Experiments based on real-world taxi data
show that the algorithm is scalable and outperforms two state-of-the-art benchmarks. To further
improve performance without compromising scalability, an extension of the algorithm incorpo-
rates global rewards, leveraging a novel counterfactual baseline to address the resulting credit
assignment problem.

Motivated by the dispatching problem in AMoD systems, the second methodological chapter
studies the robustness of DRL against distribution shifts within contextual multi-stage stochastic
combinatorial optimization (CO) problems from the operations research domain. It introduces
a novel risk-sensitive DRL algorithm: discrete SAC for the entropic risk measure. Specifically,
a Bellman equation for the entropic risk measure and a corresponding policy improvement
result are derived, based on which a practical algorithm is developed. Numerical experiments
validate that this algorithm is robust against distribution shifts. Furthermore, its performance is
compared to two other practically viable approaches for robust DRL. This research constitutes

the first structured analysis on the robustness of DRL under distribution shifts in a CO context.






1 Introduction



2 Introduction

1 Background

The United Nations expect the proportion of the world’s population that lives in urban areas to in-
crease from 55% in 2018 to 68% in 2050 (United Nations 2019). Together with a growing overall
population size, this will increase the size of the world’s urban population from 4.2 billion in 2018
to 6.7 billion in 2050 (United Nations 2019). This will inevitably lead to a rising need for intra-city
transportation, including transportation by cars, which offer convenient and flexible personal mo-
bility that is available at any time. At the same time, urban land becomes ever more precious and
significant infrastructure expansions are difficult to implement in urban environments, such that the
available parking space will not keep up with the surge in transportation demand. Therefore, pri-
vately owned cars are not a sustainable solution to serve the everyday mobility needs of a growing
urban population, as they are typically underutilized and thus block valuable land most of the time:
for example, according to German Federal Environmental Authority (Umweltbundesamt) (2022),
privately owned cars are parked for 23 hours per day on average in Germany. Consequently, soci-
eties around the world need concepts for urban mobility that use available infrastructure and space

efficiently while effectively satisfying future mobility demand.

In this context, mobility on demand (MoD) has emerged as a promising approach. Here, cus-
tomers of a centralized platform use shared vehicles for one-way transportation. On the one hand,
there are car-sharing systems where customers drive the vehicles themselves, e.g., Share Now
which operated about 10,000 vehicles across Europe which drove about 200 million kilometers in
2022 (Share Now 2023). On the other hand, there are ride-hailing service providers such as Uber,
Lyft, or DiDi, besides traditional taxis. For example, Uber drivers completed 7.6 billion trips in
2022 (Statista 2023). The users of such MoD systems have flexible access to individual car rides at
any time without having to privately own a vehicle. Since MoD platforms need a lot less vehicles
than the number of customers they serve, they increase vehicle utilization while reducing parking

space utilization.

Simultaneously, autonomous driving technology has been developing rapidly over the past years,
up to the point where autonomous vehicles without a driver are already allowed to operate under
real-world conditions, for example in San Francisco (Washington Post 2023). By combining MoD
with autonomous vehicles, one obtains autonomous mobility on demand (AMoD), where a fleet of
self-driving vehicles serves customers’ ad-hoc requests for point-to-point transportation (Pavone
2015). Waymo already offers such a service in San Francisco (Washington Post 2023) and with

the further development of autonomous vehicles, AMoD will become ubiquitous in the future.

Compared to today’s ride-hailing services with human drivers, AMoD will significantly reduce
the operating costs, since no driver income must be payed anymore. Becker et al. (2020) estimate
that vehicle automation will result in a 84% decrease of operating costs compared to traditional
taxis in Berlin. These cost savings will lead to significantly lower prices for AMoD compared to
today’s ride-hailing services. In turn, this will foster widespread adoption of AMoD, also by new

customer groups. A case study for Singapore shows the far-reaching implications of ubiquitous
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AMoD usage: a fleet that entails about one-third of the number of vehicles used in Singapore is

sufficient to serve the entire mobility demand of the city’s population (Pavone 2015).

Another difference between AMoD and non-autonomous MoD is that the operator of an AMoD
system obtains full control over the vehicle fleet. In contrast, human drivers can make the final de-
cisions in non-autonomous MoD systems, e.g., deciding which customer to serve next. Centralized
control allows for improved coordination across the operating area of the system, thereby improv-
ing its efficiency. However, this also implies that algorithms are necessary to centrally control

AMoD systems and the efficiency of these systems depends on the quality of the used algorithms.

To control an AMoD system, two decisions are particularly relevant: dispatching vehicles to
customer requests and rebalancing the vehicle fleet through empty driving operations to improve
the vehicles’ ability to serve future customer demand. This thesis focuses on the dispatching de-
cision, that is to accept or reject requests and match the accepted ones with available vehicles.
These dispatching decisions can implicitly contribute to rebalancing the vehicle fleet, by accepting
requests and assigning them to vehicles such that the vehicles will be in favorable positions after
serving the customers, while rejecting requests that would lead to an unfavorable vehicle distri-
bution. In contrast to explicit rebalancing, this does not induce a significant amount of additional
traffic through mileage driven without a customer on board, which is important to consider in urban

areas that already suffer from high traffic volumes and congestion.

Several challenges arise when designing a control algorithm for AMoD dispatching. Firstly,
the algorithm must make decisions online, in real-time, without knowledge of future requests.
Secondly, the algorithm shall make anticipative decisions, taking their impact on the future into
account. To do so, it should leverage information patterns observable in historic data. Thirdly, the

algorithm must scale to a large system size with hundreds of vehicles.

An approach well suited to address the first two challenges is model-free deep reinforcement
learning (DRL) (Sutton and Barto 2018, Mnih et al. 2015). It is designed for anticipative decision-
making in sequential, stochastic problem settings. In the training environment, customer demand
that was observed in the past can be replayed, such that the DRL agent can infer relevant informa-
tion patterns directly from the data. Moreover, due to the use of neural networks (NNs) for function
approximation, DRL is a suitable approach for problems that require the processing of complex
environment information at a large scale. However, standard DRL algorithms are not scalable to
very large action spaces, such as the action space of a central AMoD system controller that must
make decisions for many vehicles and requests simultaneously. Additionally, the performance of
DRL algorithms is sensitive to changes of the problem’s parameters (Iyengar 2005), e.g., shifts
in the customer demand distribution. Such a distribution shift in transportation patterns occurred,
e.g., after the surge of Covid (Huang et al. 2020). Since robustness against unexpected events is
an important consideration for the real-world deployment of an algorithm, the lack of robustness

of DRL algorithms is a key concern hindering their practical application.
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Consequently, the following two levers are important to make DRL algorithms practically ap-
plicable to the AMoD dispatching problem, thereby facilitating the deployment of efficient and

reliable AMoD systems at scale:
1. Providing a scalable dispatching algorithm for AMoD systems.

2. Providing a dispatching algorithm that is robust against distribution shifts.

2 Aim and scope of the thesis

This thesis aims to address challenges of high practical relevance related to the operations of fu-
ture AMoD systems. Specifically, the thesis contributes two novel DRL algorithms to control the
vehicle fleet of an AMoD system operator:

1. A scalable DRL algorithm to dispatch the vehicle fleet of a central, profit-maximizing AMoD
system operator to customer requests. To achieve scalability to a large system size, this thesis
uses a multi-agent approach. It introduces two versions of the algorithm: one with local, per-

agent rewards and one with global, system-level rewards.

2. A DRL algorithm that is robust against distribution shifts. It is applicable to dispatching in
AMoD systems, but also to other contextual multi-stage stochastic combinatorial optimiza-

tion (CO) problems from the operations research domain.

Moreover, the thesis conducts extensive numerical experiments to validate and evaluate the efficacy
of the proposed algorithms in comparison to multiple benchmarks. Particularly for the robust
algorithms, the performance analysis of the benchmarks is of independent interest. It leads to a
structured analysis of different approaches to improve the robustness of DRL against distribution
shifts.

3 Structure and contribution of the thesis

The remainder of this thesis is organized as follows.

Chapter 2 reviews related literature. Accordingly, it reviews algorithms to control (autonomous)
MoD fleets, considering approaches with and without (deep) reinforcement learning (RL). Besides,
it discusses purely methodological literature on multi-agent DRL. Furthermore, it analyzes the
literature on robust (deep) RL. Based on the review and analysis of the state of the art, this chapter
identifies research gaps.

Chapter 3 considers the online problem of making proactive request acceptance/rejection and
vehicle-to-request assignment decisions for a profit-maximizing operator of an AMoD system.
This problem is formalized as a Markov decision process. Then, the chapter develops a novel

combination of multi-agent Soft Actor-Critic (SAC) with local rewards and weighted bipartite
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matching to obtain an anticipative control policy. This algorithm factorizes the operator’s other-
wise intractable action space, but still obtains a globally coordinated decision. Experiments based
on real-world taxi data show that the algorithm outperforms two benchmarks which have been
prevalently used as the state of the art: a greedy policy and an algorithm based on model predictive
control (MPC). Specifically, it obtains up to 5% higher profits on most problem instances, is stable
across these instances, and can be easily scaled to large system sizes.

Furthermore, Chapter 3 extends the algorithm with local rewards to train the agents with global
rewards by combining SAC for discrete actions with credit assignment based on a novel coun-
terfactual baseline, thereby resolving goal conflicts between the trained agents and the operator’s
global objective. Since this algorithm based on purely global rewards scales only to medium-
sized problem instances, the chapter derives a scheduled algorithm that combines the algorithms
based on local and global rewards. Incorporating global rewards further improves the algorithm’s
performance by up to 2%, due to improved implicit vehicle balancing and demand forecasting.

Chapter 4 studies the robustness of DRL algorithms against distribution shifts. It considers
not only the dispatching problem in AMoD systems, but more generally contextual multi-stage
stochastic CO problems from the operations research domain. In this context, risk-sensitive al-
gorithms promise to learn robust policies. The chapter introduces a novel risk-sensitive DRL
algorithm: discrete SAC for the entropic risk measure. It is the first model-free risk-sensitive DRL
algorithm for discrete actions that builds on the state of the art in risk-neutral DRL. Specifically,
Chapter 4 derives a version of the Bellman equation for ()-values for the entropic risk measure,
establishes a corresponding policy improvement result, and infers a practical algorithm. Further-
more, an environment that represents typical contextual multi-stage stochastic CO problems is
introduced and used to perform numerical experiments. The results empirically validate that the
novel algorithm is robust against realistic distribution shifts, without compromising performance
on the training distribution. Additionally, the proposed risk-sensitive algorithm is superior to risk-
neutral SAC as well as to two other practically viable approaches for robust DRL: manipulating
the training data and entropy regularization. This research constitutes the first structured analysis
on the robustness of RL under distribution shifts in the realm of contextual multi-stage stochastic
CO problems.

Chapter 5 concludes the thesis by summarizing its findings, discussing its limitations and iden-

tifying directions for future research.
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1 Introduction

The introduction of autonomous mobility on demand (AMoD) systems, where a central operator
controls a fleet of autonomous vehicles to serve stochastic, ad-hoc customer requests for point-to-
point transportation within an operating area, raises new operational challenges. Particularly, while
full knowledge of the current system state combined with full and reliable control over all vehicles
enables advanced control strategies, realizing their potential requires appropriate algorithmic so-
lutions. The core decision that must be made by such algorithms is the dispatching decision, i.e.,
deciding which customer requests to serve with which vehicle. Multiple approaches to design al-
gorithms to control (autonomous) mobility on demand (MoD) systems exist in the literature. They
are reviewed in Section 2, with a special focus on deep reinforcement learning (DRL) algorithms.

As single-agent DRL does not scale to the action space sizes necessary to make dispatching
decisions for realistic AMoD systems with hundreds or even thousands of vehicles, multi-agent
approaches are a suitable solution. However, naively applying single-agent DRL algorithms to the
multi-agent case leads to multiple theoretical and practical problems, in particular when the number
of agents is large. Therefore, multi-agent DRL has received lots of attention in the literature.
Section 3 reviews approaches to enable well-performing multi-agent DRL algorithms, focusing on
parts of the literature that are most relevant for the AMoD application and the work presented in
Chapter 3.

Moreover, policies trained by reinforcement learning (RL) are sensitive to changes of environ-
ment parameters (Iyengar 2005), e.g., shifts in the customer demand distribution in the case of
AMoD. For practical applicability, it is important that an algorithm’s performance is robust against
such disturbances. However, the robustness of (deep) RL algorithms applied to AMoD systems,
or more generally to contextual multi-stage stochastic combinatorial optimization (CO) problems
from the operations research domain, has received very limited attention. Thus, Section 4 reviews
the methodological literature on robust RL, again with a focus on approaches that are most relevant

for the work presented in this thesis.

2 Dispatching in mobility on demand systems

First, Section 2.1 provides a short overview of algorithms for dispatching in AMoD systems that
do not use DRL. Second, Section 2.2 discusses DRL-based algorithms. As many works consider

the case of non-autonomous MoD systems, including taxi systems, these are covered as well.

2.1 Approaches without reinforcement learning

Since the focus of this thesis is DRL, the following review of classical approaches without RL
provides an overview, but it is not exhaustive. A simple but effective dispatching strategy is to use
a greedy policy as proposed in Liao (2003) and Lee et al. (2004), while Seow et al. (2010) examine

the disadvantages of this approach. Multiple rule-based heuristics to improve upon a greedy policy
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are developed in the literature, for example for dispatching including ride-sharing and rebalancing
in Levin et al. (2017). Maciejewski et al. (2016) solve the dispatching problem based on the
linear assignment problem via CO. A comparison of different heuristics, partly combined with
CO, is provided in Hyland and Mahmassani (2018). The relatively simple approaches discussed
so far are often used in (agent-based) simulations to study questions at the strategic rather than
the operational level. For example, Boesch et al. (2016) consider the fleet sizing question using
a simulation based on a greedy dispatching policy, and Zhang et al. (2015) examine the impact
of AMoD on urban parking demand using a simulation based on a dispatching and rebalancing
heuristic.

Furthermore, Zhang and Pavone (2016) use a queueing theoretical approach to dispatch and re-
balance a vehicle fleet, while Zhang et al. (2017) introduce hand-crafted features based on which
they solve a CO problem to make dispatching decisions. Alonso-Mora et al. (2017) present a
model predictive control (MPC) approach for dispatching and rebalancing and Iglesias et al. (2018)
combine MPC with a neural network for demand forecasting. Tsao et al. (2018) extend these ap-
proaches to stochastic MPC. Finally, Jungel et al. (2023) use a combination of CO and supervised
learning for dispatching and rebalancing. The numerical experiments in this thesis use a greedy
policy and an MPC algorithm as benchmarks, which have been prevalently used as the state of the

art.

2.2 Approaches based on reinforcement learning

In the context of (autonomous) MoD systems, DRL is an attractive alternative to the approaches
presented in the previous section, since it can learn an anticipative policy in a stochastic environ-
ment while being model-free. Consequently, it has gained attention in the literature in recent years.
Many works include or purely focus on explicitly rebalancing the vehicle fleet by relocating vehi-
cles without customers to a location that is predicted to be more favorable to serve future demand
than the current location. For example, Holler et al. (2019) use a Deep Q-Network (DQN) and a
Proximal Policy Optimization (PPO) algorithm for dispatching and rebalancing, Gammelli et al.
(2021) propose DRL with graph neural networks to make rebalancing decisions, Skordilis et al.
(2022) use convolutional neutral networks and PPO for the same purpose, and Liang et al. (2022)
dispatch and rebalance vehicles based on the solution of a CO problem that receives value function
estimates from a DRL algorithm as an input.

Other works focus on DRL for non-myopic dispatching without explicit rebalancing. The dis-
patching decision entails an implicit rebalancing decision: accepting customer requests with des-
tinations that position vehicles in favorable locations to serve future demand, while rejecting re-
quests that would lead to unfavorable locations, can also be used to rebalance the vehicle fleet.
Compared to explicit rebalancing, this implicit rebalancing avoids additional costs as well as nega-
tive externalities due to empty driving. In this context, Xu et al. (2018) combine CO with dynamic
programming, which estimates the state value function. Wang et al. (2018) use DQN with trans-

fer learning to learn dispatching policies for multiple cities. Both Xu et al. (2018) and Wang et al.
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(2018) have inferior performance compared to at least one of the subsequent works. Li et al. (2019)
propose a mean field multi-agent actor-critic algorithm. Tang et al. (2019) use bipartite matching
based on a learned state value function, which is represented by a neural network that includes
a cerebellar embedding. Zhou et al. (2019) combine multi-agent DQN with minimization of the
Kullback-Leibler divergence (KL-divergence) between the vehicle and the request distribution to
align supply and demand. Finally, Sadeghi Eshkevari et al. (2022) describe how DiDi recently
rolled out DRL for dispatching in practice. The authors describe multiple components of their
methodology that are engineered specifically for characteristics of their practical use case, includ-
ing a customized utility function that is tuned based on prior knowledge of the market in which
the algorithm is deployed. A 1.3% increase in revenue compared to a myopic dispatching policy
is reported. All these works on DRL for non-myopic dispatching without explicit rebalancing test
the developed algorithms in numerical experiments, typically based on real-world data.

The works reviewed in the previous paragraph strive to find improved dispatching policies to
optimize today’s non-autonomous MoD systems with human drivers. In such systems, the money
earned by the drivers dominates the total cost balance, as opposed to operational costs (e.g., for fuel
and maintenance). Consequently, revenue maximization is the primary objective for the dispatch-
ing policy, while operational costs are neglected. In line with this argument, the works cited in the
previous paragraph aim at maximizing the drivers’ revenue or the total number of orders served.
However, with autonomous vehicles, this reasoning is not valid anymore: costs will decrease and
so will the prices and thus the revenue per served customer due to competition between multiple
AMoD system providers. Consequently, operational costs cannot be neglected anymore, such that
profit maximization will be the primary objective of an AMoD system operator. Therefore, this
thesis develops a dispatching algorithm aimed at profit maximization.

To ensure scalability, Xu et al. (2018), Wang et al. (2018), Tang et al. (2019), Sadeghi Eshkevari
et al. (2022) (parallel work to this thesis), Liang et al. (2022) (parallel work to this thesis) use a
multi-agent DRL algorithm, which they combine with weighted bipartite matching to coordinate
the individual agents and obtain a global action for the central system operator. They all employ
value-based algorithms, while this thesis focuses on actor-critic algorithms. Actor-critic algorithms
enable more advanced strategies to mitigate problems arising from multi-agent learning (see Sec-
tion 3). Furthermore, although the literature on DRL to control (autonomous) MoD systems has
developed several multi-agent algorithms, the question how to align the individual agents’ actions
with the system-level objective through global rewards and solve the resulting credit assignment

problem (see Section 3) remains open. This thesis aims to answer this question.

3 Multi-agent deep reinforcement learning

In multi-agent (deep) RL, multiple RL agents are trained simultaneously within one environment,
where the transitions and rewards depend on the actions of all agents. In many environments, there

are multiple decision-makers that act concurrently. While they are in general not independent of
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each other, they can take their own decisions. This is the case, for example, in multi-player games,
where players can either be competitive or cooperative. Besides, multi-agent RL can also be used
to factorize the action space of a single decision-maker, thereby splitting a large, intractable action
space into multiple small, tractable action spaces, even though the problem setting itself does not
require multi-agent decision-making. This approach to achieve scalability is particularly attractive
if the environment by design includes multiple entities, i.e., agents, who can take independent
decisions, and the single decision-maker’s action space can be reconstructed from the agents’
action spaces. This is the case for an AMoD system, where vehicles can naturally be considered as
individual agents, although a central operator makes decisions at the global level. Consequently, a
multi-agent approach can be naturally used to ensure the scalability of DRL algorithms to control
AMoD systems.

Multi-agent RL can be classified into three types of settings: competitive settings, where agents
are opponents competing for a reward; cooperative settings, where agents work together to achieve
a common goal; and mixed settings, where agents can receive rewards with a cooperative and a
competitive component, or groups of agents form cooperative teams, which then compete with
each other. This thesis considers a central AMoD system operator and factorizes its action space
using multiple agents. Consequently, the agents shall contribute to a common goal, which is to op-
timize the system operator’s overall performance. Thus, the remainder of this section focuses on
the cooperative setting, while the reader is referred to Gronauer and Diepold (2022) for a survey
also covering competitive and mixed settings. Furthermore, the literature distinguishes homo-
geneous versus inhomogeneous agents. Certain approaches to enable multi-agent RL are only
applicable for the case of homogeneous agents, e.g., parameter sharing (see below). Chapter 3 will
show that for the purpose of this thesis, agents can be assumed to be homogeneous.

The remainder of this section focuses on multi-agent DRL as opposed to multi-agent RL with-
out neural networks as function approximators. It outlines challenges that occur due to multi-
agent learning that are not present in single-agent DRL, alongside approaches to meet these chal-
lenges. This overview of state-of-the-art multi-agent DRL partly builds on the extensive review in

Gronauer and Diepold (2022), to which the reader is referred for additional details.

Partial observability. Partial observability is often encountered in multi-agent settings, as
agents might only have access to local observations of the environment. The primary approach to
mitigate this is to establish communication between agents (e.g., Foerster et al. 2016, Sukhbaatar
et al. 2016, Jiang and Lu 2018, Das et al. 2019), such that each agent benefits from the local obser-
vations of all other agents. Communication can also be useful to coordinate agents and mitigate the
non-stationarity of the environment (see below). However, introducing communication requires a
significant amount of additional complex algorithmic machinery and additional hyperparameters
that must be tuned. Partial observability is less of a concern when the agents are a means to factor-
ize the action space of a central operator and can therefore be assumed to have access to the global

state information, rather than actual agents sensing their surroundings in the environment.
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Agent coordination. Another challenge in cooperative multi-agent DRL is to align the agents’
actions such that they lead to a cooperative and coordinated outcome. Communication can be used
to achieve this. Besides, one can let the agents learn a model of the other agents, such that they can
predict the other agents’ behavior (e.g., Raileanu et al. 2018, Tacchetti et al. 2019, Roy et al. 2020),
which typically implies a lot of additional learning effort. An alternative approach is to combine
hierarchical DRL with multi-agent DRL as in, e.g., Kumar et al. (2017), Tang et al. (2018), Ahilan
and Dayan (2019). This thesis takes a different approach to agent coordination by combining
multi-agent DRL with CO. Details on this approach follow in Chapter 3.

Scalability. While multi-agent DRL can be used to achieve scalability for problems where the
single-agent formulation results in an intractable action space, the computational effort to train a
large number of agents can be prohibitively expensive. Therefore, scalability remains a concern,
also with multi-agent DRL. However, with homogeneous agents, parameter sharing (Gupta et al.
2017, Sartoretti et al. 2019, Igbal and Sha 2019) is a simple approach to break the correlation be-
tween the number of agents and computational effort: since the agents are homogeneous, they can
have the same neural network parameters that parameterize the policy and/or the value function,
such that only a single actor and/or critic is needed for all agents. They can be trained centrally, i.e.,
the total parameter update is given by the sum of per-agent updates, thereby using the experience
of individual agents to update all agents. The forward pass through the networks can remain in-
dependent across agents, allowing for decentralized and parallelized execution. Compared to this
approach, a decentralized training scheme is less sample-efficient. There are further approaches to
improve the scalability of multi-agent DRL, e.g., curriculum learning, where the training process
starts with a reduced number of agents and the learned policy is then used for a larger number of
agents (Gupta et al. 2017, Long et al. 2020). However, these approaches are less relevant in the
context of this thesis, which uses parameter sharing.

Non-stationary environment. From one agent’s perspective, other agents are a part of the en-
vironment. Since all agents are trained concurrently, their policies change simultaneously and the
perceived environment is non-stationary, such that the Markov property does not hold. This non-
stationarity of the environment can be mitigated using two approaches already discussed above:
communication, or using a model of the other agents. A different approach is particularly rele-
vant in the context of this thesis: when using an actor-critic algorithm, the critic can get the other
agents’ actions as an additional input, such that the policy evaluation can explicitly account for the
other agents’ behavior. This approach is called “centralized critic” and used, e.g., by Lowe et al.
(2017), Igbal and Sha (2019).

Credit assignment. Finally, a basic principle in RL is that agents obtain a reward signal which
provides a feedback whether the executed action was good or bad. When the actions of many
agents contribute to a shared, global reward signal, this feedback mechanism, directly connecting

an agent’s action and observed reward, is missing, as the many other agents’ actions dominate
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the global reward. Thus, an important challenge is to derive per-agent contributions to the global
success from a global reward, which is called the credit assignment problem (Weifl 1995, Wolpert
and Tumer 1999, Chang et al. 2003, Agogino and Tumer 2004). A solution approach to the credit
assignment problem for value-based algorithms is value function decomposition, where a decom-
position of a global reward into per-agent rewards is learned (e.g., Sunehag et al. 2018, Rashid et al.
2018, Son et al. 2019). For actor-critic algorithms, an alternative approach is reward marginaliza-
tion, which trains a function to estimate an individual agent’s contribution to a global reward (e.g.,
Nguyen et al. 2018, Wu et al. 2018, Foerster et al. 2018). For example, Foerster et al. (2018) calcu-
late the advantage of a single agent’s action over a global action counterfactual baseline. Chapter 3
of this thesis first uses local rewards to circumvent the credit assignment problem, at the price of
lower performance at the global level due to suboptimally incentivized agents. Afterwards, Chap-
ter 3 uses global rewards and proposes a novel counterfactual baseline building on the approach in

Foerster et al. (2018) to mitigate the credit assignment problem.

4 Robust reinforcement learning

Model-free (deep) RL is trained based on interactions with the environment, either in a simulator
or in the real world. Throughout the training process, it learns a policy that is tailored to the en-
vironment, in order to achieve a high expected reward based on the observed experience. While
this is desired in principle, it can lead to poor performance when the environment behaves un-
expectedly during testing, as policies trained through (deep) RL are sensitive to changes of the
underlying Markov decision process (MDP) (Iyengar 2005). When considering contextual multi-
stage stochastic CO problems, like the AMoD dispatching problem, changes in the transition or
the reward function are particularly relevant, since they can be easily caused by changing exter-
nal circumstances in the environment, such as shifts in the customer demand distribution. More
generally, state observations or actions can also be disturbed, e.g., due to an adversarial attack,
but such disturbances are not the focus of this thesis. Robust RL aims to train a policy that is
robust against disturbances to the environment, i.e., that exhibits acceptable performance on the
disturbed environment without retraining or finetuning. Intuitively, one expects a tradeoff between
learning a policy that consistently achieves high expected returns on the training environment and
the robustness of a policy, i.e., a consistency-robustness tradeoff.

A large body of literature exists on robustness against disturbed transition and reward func-
tions. Traditionally, an uncertainty set over transition functions is introduced to formulate a robust
MDP, and an uncertain reward function can be treated similarly to an uncertain transition function
(Nilim and El Ghaoui 2005, Iyengar 2005). An alternative interpretation of such a robust MDP
is a two-player game between the primary agent that shall be trained and an adversary. Here, the
adversary plays the role of the disturbance, taking adversarial actions within the uncertainty set.
With sufficiently strong assumptions about the uncertainty set, particularly rectangularity, the ro-

bust MDP formulation becomes tractable and can be solved using dynamic programming (Nilim



16 State of the Art

and El Ghaoui 2005, Iyengar 2005, Wiesemann et al. 2013, Mannor et al. 2016, Goyal and Grand-
Clément 2023). The robust MDP formulation focuses on robustness against the worst case, i.e., the
optimization aims at finding the best policy assuming the worst case. How conservative the solu-
tion is depends on the chosen uncertainty set. To find a policy that is not too conservative, one can
adapt the uncertainty set. Alternatively, one can optimize for an objective that explicitly accounts
for the consistency-robustness tradeoff (Xu and Mannor 2006), or use a distributionally robust
formulation (e.g., Xu and Mannor 2010, Delage and Mannor 2010). None of the aforementioned
works uses function approximation, such that they are limited to small-scale settings. Tamar et al.
(2014) develop an approximate dynamic programming method with linear function approximation
assuming a known uncertainty set. However, assuming knowledge of the uncertainty set does not
lead to a model-free algorithm. Pinto et al. (2017) instead introduce an adversary which is trained
simultaneously with the primary agent to disturb the system. While this approach suffers from
neither of the aforementioned weaknesses, training the adversary requires significant additional

implementation and computational effort.

The approaches discussed so far have at least one of the following drawbacks: they do not give
control over the consistency-robustness tradeoff; they are not model-free; they are not scalable
with neural networks (NNs) as function approximators; or they require lots of machinery to solve
a bi-level optimization problem or to train an adversary. In contrast, this thesis focuses on efficient
and tractable approaches that can build on state-of-the-art model-free DRL algorithms to achieve
robustness under realistic distribution shifts. In other words, this thesis considers approaches tai-
lored for practical applicability. Thus, the remainder of this section focuses on such approaches:
manipulation of training data, entropy regularization, and risk-sensitive RL. The reader is referred
to the extensive review in Moos et al. (2022) for further references and details on works that do not

meet the mentioned requirements.

Manipulation of training data. In supervised learning, particularly for NNs, manipulating the
training data has been established as a successful strategy to achieve robustness, see Goodfellow
et al. (2015), Tramer et al. (2018), Sinha et al. (2018). In the supervised learning context, this
means to introduce adversarial samples into the training data, such that the network observes this
data during the training process and is therefore less subsceptible to adversarial attacks during
testing. This idea can be transferred to the RL context by manipulating the transitions observed
during training. For example, when considering distribution shifts and learning based on historic
data, this can be achieved by replacing parts of the historic data with synthetic data in a way that
improves the robustness of the RL algorithm. This approach requires expert knowledge on how
to choose the synthetic data such that it helps to achieve robustness. Moreover, it necessitates the
ability to effectively intervene with the environment, which is sometimes but not always possible in
practice. For the RL context, there exists no prior work that analyzes the manipulation of training

data to improve robustness.
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Entropy regularization. Entropy-regularized RL (e.g., Ziebart et al. 2008, Haarnoja et al.
2018c¢) requires a stochastic policy. Then, the standard optimization objective can be adapted by
adding the policy’s entropy to the reward. Thereby, high entropy is incentivized, which encour-
ages exploration. The tradeoff between expected rewards and the entropy term in the objective
can be controlled through a hyperparameter. It has been empirically observed that entropy regular-
ization improves the robustness of DRL algorithms compared to DRL algorithms without entropy
regularization, see Haarnoja et al. (2018a,b), Eysenbach and Levine (2022). These works train
robots to perform different tasks. To evaluate the robustness of the learned policy, forces are ap-
plied to the robot or obstacles are placed in the environment during testing. Intuitively, entropy
regularization introduces noise during training, which incentivizes wider exploration of the state
space and improves the learned policy’s robustness. Furthermore, Eysenbach and Levine (2022)
establish a theoretical connection between robust and entropy-regularized RL by showing that

entropy-regularized RL maximizes a lower bound on a robust RL objective.

Risk-sensitive RL. In risk-sensitive RL, one usually optimizes a risk measure, e.g., mean-
variance or conditional value at risk (CVaR), of the return instead of the expected return. Theo-
retical connections exist between risk-sensitive and robust RL: Chow et al. (2015) show that the
CVaR objective can be interpreted as the expected cost (negative reward) under worst-case model-
ing errors for a given error budget. Here, modeling errors take the role of environment disturbances
during testing compared to training. Osogami (2012) shows that risk-sensitive MDPs optimizing
an expected exponential utility function or specific coherent risk measures (Artzner et al. 1999) are
equivalent to certain robust MDP formulations, respectively.

Some works consider a constrained optimization problem, where the expected return is maxi-
mized while constraining a risk measure of the returns to set a threshold for unwanted outcomes,
see, e.g., Prashanth and Ghavamzadeh (2013), Prashanth (2014), Prashanth and Ghavamzadeh
(2016), Yang et al. (2021). This approach has a strong focus on safety and/or worst-case outcomes
and thus fits the purposes of this thesis less than directly optimizing a risk-sensitive objective func-
tion. An approach to optimize risk-sensitive objective functions is distributional RL, see, e.g., Ma
et al. (2020), Singh et al. (2020), Urpi et al. (2021). It has the advantage that the learned distri-
butional information can be used to consider any risk measure, i.e., the proposed algorithms are
agnostic to the choice of risk measure. However, this comes at the cost of additional algorithmic
complexity.

Thus, the remainder focuses on approaches that directly optimize a risk-sensitive objective. To
do so, Howard and Matheson (1972), Jacquette (1976), Patek (2001) use dynamic programming,
assuming knowledge of the underlying MDP. Tamar et al. (2012) propose policy gradient algo-
rithms for an objective function involving both expected cost and the variance of the cost. Chow
and Ghavamzadeh (2014) derive policy gradient and actor-critic algorithms for an objective func-
tion based on the CVaR. Chow et al. (2015) present an approximate value iteration algorithm for
a CVaR objective. Tamar et al. (2015) derive policy gradient and actor-critic algorithms for the

whole class of coherent risk measures. All of these works date back to the year 2015 or earlier and
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develop basic RL algorithms, rather than building on today’s state-of-the-art. In particular, they
do not include NNs as function approximators to deal with large state spaces. The reported ex-
periments focus on robustness under action perturbations or risk-sensitivity in finance applications
without a relation to robustness or a CO context.

Recently, exponential criteria and the entropic risk measure have been increasingly used as a
risk-sensitive objective. In this context, Fei et al. (2020, 2021a,b) conduct theoretical regret anal-
yses, but do not provide practical state-of-the-art algorithms or experimental results. Nass et al.
(2019) derive a policy gradient algorithm for the entropic risk measure and apply it in a robotics
context. Noorani and Baras (2021) introduce a risk-sensitive variant of the REINFORCE algorithm
for exponential criteria and test it on the Cart Pole and Acrobot environments. The risk-sensitive
algorithm outperforms its risk-neutral counterpart, even though the environment at test time is the
same as during training (no disturbance). (Noorani et al. 2022) extend this work to an actor-critic
algorithm, which outperforms its risk-neutral counterpart on Cart Pole and Acrobot environments
when they are disturbed by varying the pole lengths during testing. Although these works use NNs
for function approximation, they are still the risk-sensitive counterparts to basic instead of state-
of-the-art risk-neutral RL algorithms. This is not the case for Zhang et al. (2021), which develops
a risk-sensitive version of TD3 for a mean-variance objective and evaluates its performance on
MuJoCo environments with disturbed actions. However, this algorithm is not compatible with a

discrete action space, which is the focus of this thesis in a CO context.

Concluding, no model-free risk-sensitive DRL algorithm for discrete actions that is based on the
state-of-the-art in risk-neutral DRL exists. Moreover, none of the existing works investigates ro-
bustness against distribution shifts, and most works on risk-sensitive RL compare the performance
of risk-sensitive RL algorithms only to their risk-neutral counterparts. Finally, there exists no pub-
lished work with a structured analysis of the robustness of RL in contextual multi-stage stochastic
CO problems.
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Abstract

We consider the sequential decision-making problem of making proactive request assignment and re-
jection decisions for a profit-maximizing operator of an autonomous mobility on demand system. We
formalize this problem as a Markov decision process and propose a novel combination of multi-agent
Soft Actor-Critic with local rewards and weighted bipartite matching to obtain an anticipative control
policy. Thereby, we factorize the operator’s otherwise intractable action space, but still obtain a glob-
ally coordinated decision. Experiments based on real-world taxi data show that our method outperforms
state of the art benchmarks with respect to performance, stability, and computational tractability. Fur-
thermore, we extend our algorithm to incorporate global rewards, which resolves so far existing goal
conflicts between the trained agents and the operator by assigning rewards to agents leveraging a novel
counterfactual baseline. We show that this further improves the algorithm’s performance.
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1. Introduction

Mobility on demand (MoD) systems, in which a fleet of free-floating vehicles serves customers’
ad hoc requests for point-to-point transportation, have transformed urban mobility in recent years.
Companies like Uber, Lyft, and DiDi, made MoD more accessible compared to taxi-based ride
hailing services. Autonomous vehicles will further transform MoD systems; besides much lower
prices, a major benefit of autonomous mobility on demand (AMoD) is its improved potential for
advanced control strategies, as a central operator obtains full control over the entire fleet. This
transformation changes the fleet operator’s control problem substantially: MoD operators focus
primarily on revenue maximization, as human drivers’ income is (almost) a fixed cost that domi-
nates mileage-dependent operational cost. Contrarily, AMoD operators focus on the maximization
of their operating profit, because operational costs dominate their total cost balance. In this con-
text, the central operator can leverage its full knowledge about the system state and fleet control to
make improved (proactive) dispatching decisions, i.e., request to vehicle assignment and rejection,

to maximize its profit.

Since an operator does not have profound knowledge about future trip requests, it faces an
online decision-making problem in a stochastic environment. Hence, it is promising to apply deep
reinforcement learning (DRL) to this problem. However, AMoD systems entail many vehicles
and trip requests, such that an operator’s action space is very large and possibly time-varying as
the number of requests changes over time. It is thus infeasible to apply off-the-shelf single-agent
DRL. To solve this problem, we propose a novel combination of a multi-agent DRL algorithm
with optimization-based centralized decision-making through weighted bipartite matching. This
hybrid algorithm combines the advantages of multi-agent approaches, DRL, and combinatorial
optimization. Firstly, we present our algorithm using local, egoistic, per-agent rewards, to avoid a
credit assignment problem when training the agents’ policy. However, this can lead to sub-optimal
behavior from a central operator’s perspective that aims at maximizing the system-wide profit.
Thus, secondly, we extend our algorithm by proposing a novel way to train the agents with global
rewards. Therefore, we introduce a new advantage function, which estimates the individual agents’

contribution to the global reward, as such aligning their goal with the central operator.

1.1. Related Work

To keep this literature overview concise, we focus on literature for controlling (autonomous) MoD
systems as well as literature for solving the credit assignment problem in multi-agent reinforcement
learning (RL) in the following. For a broader review of multi-agent RL, we refer to Gronauer and
Diepold (2022) and further elaborate on how we build on the multi-agent RL literature in Section 3.
Classical approaches for dispatching and explicit rebalancing decisions focused on greedy or
hand-crafted feature-based policies (Liao 2003, Zhang et al. 2017), queueing theoretical approaches
(Zhang and Pavone 2016), and model predictive control (MPC) (Alonso-Mora et al. 2017).
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Recently, many works applied DRL in the context of (autonomous) MoD, often including or
purely focusing on explicit rebalancing (e.g., Jiao et al. 2021, Gammelli et al. 2021, Skordilis et al.
2022, Liang et al. 2022). Contrarily, other works focused on DRL for non-myopic dispatching,
which entails an implicit rebalancing decision that avoids additional costs due to empty driving.
Early approaches (cf. Xu et al. 2018, Wang et al. 2018) were shown to be inferior to at least one
of the subsequent works: Li et al. (2019) proposed a mean field multi-agent actor-critic algo-
rithm. Tang et al. (2019) used bipartite matching based on learned V'-values. Zhou et al. (2019)
combined a multi-agent Deep Q-Network with minimization of the Kullback-Leibler divergence
(KL-divergence) between the vehicle and the request distribution. Finally, Sadeghi Eshkevari et al.
(2022) described how DiDi recently rolled out DRL for dispatching in practice.

Since these works strive to improve the operations of today’s MoD systems, they aim at maxi-
mizing the drivers’ revenue or the number of orders served, rather than at maximizing the profit of
an AMoD system. While Xu et al. (2018), Wang et al. (2018), Tang et al. (2019), Sadeghi Eshke-
vari et al. (2022), Liang et al. (2022) also use a combination of multi-agent DRL and weighted
matching, they all employ value-based algorithms. Contrarily, we use an actor-critic algorithm,
enabling more advanced strategies to mitigate problems arising from multi-agent learning, in par-
ticular, decentralized actors with centralized critics, see Section 3. By using Soft Actor-Critic
(SAC) (Haarnoja et al. 2018), we can nevertheless benefit from the improved sample-efficiency of
off-policy algorithms.

A crucial challenge in our setting is deriving per-agent contributions to global success from a
shared reward signal, i.e., a credit assignment problem (Weil3 1995, Wolpert and Tumer 1999,
Chang et al. 2003). Solution approaches like inverse reinforcement learning (e.g., Ng and Russell
2000, Hadfield-Menell et al. 2017, Lin et al. 2018) or value decomposition (e.g., Kok and Vlassis
2006, Sunehag et al. 2018, Rashid et al. 2018, Son et al. 2019) are not applicable to our setting,
because we cannot observe the behavior of an optimal agent and do not use Q-learning. An alter-
native approach is reward marginalization, based on difference rewards (Wolpert and Tumer 2001),
which uses functions (e.g., advantage functions) to estimate the contribution of individual agents
to global rewards (e.g., Nguyen et al. 2018, Wu et al. 2018, Foerster et al. 2018). Reward marginal-
ization approaches often use actor-critic algorithms. However, reward marginalization approaches
often suffer from high learning variance and poor sample efficiency, as they are typically built on
top of basic DRL algorithms. To the best of our knowledge, no work exists that combines reward
marginalization approaches with low-variance actor-critic algorithms so far. We address this re-
search gap by embedding reward marginalization into SAC for discrete actions. Moreover, there is

no prior work using reward marginalization for DRL in an (autonomous) MoD context.

1.2. Contributions

To the best of our knowledge, we are the first to consider the problem of making proactive dis-

patching decisions for a profit-maximizing AMoD system operator with DRL.
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Firstly, we propose a novel method that combines multi-agent SAC with local rewards with
centralized final decision-making through weighted matching. We perform experiments based on
real-world data and, similar to related works, benchmark our method against a greedy policy. In
addition, we are the first to compare our method against an MPC approach. We show that our
method outperforms the greedy policy on all instances by up to 5%. Moreover, we outperform the
MPC approach in most cases. Our DRL method shows a significantly more stable performance
across varying instances, while MPC may perform arbitrarily bad—in single cases up to 60% worse
than the greedy policy. Our code for the local rewards-based method can be found at https:
//github.com/tumBAIS/HybridMADRL-AMoD.

Secondly, we extend this local rewards algorithm (LRA) to train the agents with global rewards
by combining SAC for discrete actions with credit assignment based on a counterfactual baseline
to resolve goal conflicts between the trained agents and the operator’s global objective. Our algo-
rithm combines the benefits of low learning variance and sample efficiency of SAC with the bene-
fits of credit assignment via a counterfactual baseline. Since this algorithm based on purely global
rewards scales only to medium-sized problem instances, we additionally develop a scheduled al-
gorithm that combines local rewards and global rewards with our counterfactual baseline. Thus,
we obtain a powerful new multi-agent DRL algorithm with possible applications beyond AMoD.
We again evaluate our algorithm on real-world data and show that it outperforms the LRA by up to
2%. We further provide a structural analysis which shows that using global rewards can improve
implicit vehicle balancing and demand forecasting abilities. Our code for the global rewards-based
method can be found at https://github.com/tumBAIS/GR-MADRL—-AMoD.

2. Problem Formulation: Markov Decision Process

We consider a profit-maximizing operator who centrally controls a fixed-size fleet of vehicles
to serve customer trip requests revealed over time within an operating area (see Figure 1). The
operator can accept or reject requests and dispatches accepted requests to vehicles. These decisions
must be made in real-time and immediately, i.e., the operator cannot defer requests to a later time
step, as customers are not willing to wait for feedback. If the operator accepts a request, customers

max

must be picked up within a known maximum waiting time w™* € N after the request was placed.

We formalize this control problem as a Markov decision process (MDP) as follows.

Preliminaries. We consider a discrete time horizon 7 = {0, 1, ..., 7'}. During one time step,
multiple requests can enter the system. The operator makes one decision per time step for multiple
requests simultaneously, which allows to optimize over a batch of requests. We represent the
operating area as a graph G = (V, E) with weight vectors ‘w = (‘w!, “w?) € R-y x N, denoting
the distance (“w') of and the time steps (“w?) to traverse an edge e € E. The nodes of G may

represent, e.g., the centers of zones into which the operating area is divided.
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Step t+1 Step t+2
Figure 1: Exemplary vehicle dispatching process.

States. We describe the system state at time t € 7 by S; = (t, ("'),cy g, (kf)je{17.."K}),
with R; being the variable number of new requests ‘r’, i € {1, ..., R;}, at time step ¢, and K vehicles
kl,je{l,.., K}. Arequestr = (w,o,d) consists of a waiting time w € Ny U (7, an origin 0 € V/,
and a destination d € V'\{o0}; w tracks the elapsed time from request placement to pickup, where
we set w < (¥ at pickup. We denote a vehicle by k = (v, 7, 7!, r?), with position v € V and the
number of time steps 7 € Ny left to reach this position. Here, v can either be the current node if
the vehicle idles or the next node that will be reached if the vehicle travels. Furthermore, slightly
abusing notation, a vehicle can have at most two assigned requests 7!, 2. Assigning more requests
to one vehicle is unreasonable for realistic trip lengths and maximum waiting times. We denote

the position of vehicle k:i by /v, and denote other components of the vehicle vector likewise.

Actions. The action space describing feasible decisions of the operator is

A(S,) = {(a;,...,aﬁt)

G0 (df = e (LK) A 90 = ) Vie (Lo R,
Ry

Dii(aj=j)<1Vje {1,...,[(}}. (1)

i=1
The operator can take one decision a! per request 'r’, i € {1, ..., R;}, either rejecting it (a: = 0),
which means that the request leaves the system, or assigning it to vehicle k7 (a! = j), which is
only possible if the vehicle does not already have two assigned requests, i.e., if 777 = ¢ holds.
The final condition in (1) implies that at most one new request is assigned to each vehicle in each
time step, which is a realistic simplification facilitating the application of a matching algorithm.
The central operator’s action space size is of order (K + 1),

Transitions. We first describe the action-dependent transition from the pre-decision to post-
decision state. Then, we describe the transition from the post-decision state to the next pre-decision
state, which is independent of the action and only determined by the system dynamics.

A reject decision has no impact on the state. When a' = j, we add the request to the vehicle
state, i.e., if 7r' = ¢, then /r! «— ‘' and /r? — ! otherwise.

The following transitions apply to all vehicles: if the vehicle picks up a customer, i.e., if 71 #

O A 7=0 A v=o(r'), where o(r') denotes the origin of request r', then w(r') «— .
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If the vehicle moves between two nodes, i.e., if 7 > 0, then 7 < 7 — 1. If the vehicle is at a
node but moves to serve a request, i.e., if 7 = 0 A 7! # ¢, then v is replaced by the next
node v’ on the vehicle’s route to serve the request, going to origin or from origin to destination,
and 7 — @2 — 1. If a vehicle drops off a customer before the next decision is made, i.e., if
= Awlrl)=g A 7=0 A v=d(r'), we shift requests: 7' < r? and r*> < . We
increment the waiting times w # ¢J of requests that have not been picked up yet, i.e., w «— w + 1,
where w refers to w(r!) and/or w(r?). Moreover, independent of the vehicles’ states, customers
place new requests, i.e., (‘r )ZE{1 R,y is replaced by (tip )ze{l,...,Rm}' Note that we do not know
the underlying time-dependent probability distribution which generates new requests, but we can
simulate the resulting requests by replaying historic data. We assume that the new requests arrive

independently of the state-action history, such that the Markov property holds. Finally, t < ¢ + 1.

Rewards. Since the operator maximizes its profit and fixed costs are independent of the control
problem, our reward function focuses on the operating profit, which is the revenue from serving
requests minus operational costs, e.g., for fuel and maintenance. The operator obtains the revenue
for a request » when a vehicle picks up the request within the maximum waiting time. The revenue
is given by a function rev(r) € R.q, representing the operator’s pricing model. For improved
readability, we express the profit components as functions of the post-decision state S;+ and write

t for t*. Then, the total revenue at time ¢ is
K

Rev(S;) = Z ﬂ(j’rtl 3 AT =0 A du=0(r) A w(ilr)) < wmax) -rev(‘ry).
j=1
When a vehicle starts to move from v to v/, the operator incurs operational costs ¢ € R, per

distance unit, as commonly assumed (see, e.g., Bosch et al. 2018). Thus, the total cost at time ¢ is
K
Cost St = Z <'7—t =0 A jr% # @) . (Jvt’ ng)wl.

The total profit at time ¢ is Proﬁt(St+) = Rev(S;+) — Cost(S;+). Note that S+ is a function of
S, (pre-decision) and a; € A (.S}), such that we write Profit(.S;+) = Profit(S;, a;).
The AMoD operator wants to find a policy 7 (a;|S;) that maximizes the expected total reward

over all time steps, given the initial state Sp:

T-1
Profit*(Sy) = max E(s,,a) [ Z Profit (S, a;) 50] .
t=0
To do so, we propose a hybrid DRL algorithm in the following section.

3. Method: Multi-agent Soft Actor-Critic with Global
Matching

Analyzing our problem setting, we identify two key requirements to develop an algorithm that

constructs an effective control policy: first, it should leverage information patterns that can be



Hybrid Multi-agent Deep Reinforcement Learning for Autonomous Mobility on Demand Systems with Local and Global Rewards 31

observed from historic trip data to make non-myopic decisions. Second, it should be scalable to
a realistic system size to coordinate a large number of vehicles and requests. To account for the
second requirement, we formalize the centralized dispatching of vehicles to requests as a bipartite
matching problem (BMP). This BMP should be weighted to allow for non-myopic dispatching
decisions, anticipating the downstream impact of decisions in a stochastic environment. The choice
of weights heavily impacts the policy’s performance. Therefore, we use DRL to parameterize
these weights, as it accounts for the downstream impact of decisions in stochastic environments
by design and allows to extract and use information from historic data—thus, covering the first
requirement.

However, single-agent DRL is not suitable for our problem setting, as the central operator’s
action space scales exponentially with the number of vehicles and requests per time step and be-
comes intractable very quickly. Thus, we leverage multi-agent DRL to factorize the action space
at the price of increased complexity, caused by having to coordinate the actions of multiple DRL
agents to finally take a centralized decision. Our hybrid algorithm combines the advantages of
multi-agent DRL with those of combinatorial optimization: we use DRL agents as estimators to
compute non-myopic weights, serving as the input to a weighted bipartite matching algorithm,
which then makes a globally optimal and coordinated decision.

Firstly, we introduce the method with local rewards in Section 3.1. Secondly, we extend it to

global rewards in Section 3.2.

3.1. Method with Local Rewards
3.1.1. Overview

Figure 2 provides an overview of our method in which we leverage a DRL algorithm to parame-
terize a weighted bipartite matching to take anticipatory global dispatching decisions. To obtain a
weight for each request-vehicle combination, we consider each combination as one agent. We rep-
resent these agents by an actor network, which we train using the SAC algorithm (Haarnoja et al.
2018). To obtain the weights for our BMP, we post-process the actors’ outputs, such that from the
perspective of the DRL agents and the computation of policy parameter gradients, post-processing

and matching are part of the environment.

Parallel computation of per-agent actions Weighted bipartite matching
C Vehicles Requests
Actor Dostorocessin Per-agent scores .
(shared parameters) P 9

Per-agent \ 4

Q-values Global state - Historic
[ Global action trip data

[ \ v
critic Clobal state Simulated environment
(shared parameters) H Per-agent rewards

Figure 2: Overview of our method (gray text refers to parts which we use only during training).

A &
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Since the DRL agents are a means to factorize the action space of the central operator, rather
than “real” individual agents, they can observe the global system state. Although they should take
cooperative decisions that eventually benefit the central operator’s profit, the agents observe their
own (egoistic) rewards, not the global system reward, to avoid a credit assignment problem (e.g.,
Agogino and Tumer 2004) that otherwise occurs, in particular with many agents. Here, we enforce
coordination of the agents through the BMP and note that varying the credit assignment scheme
remains an interesting question for future work.

Individual rewards imply a need for per-agent critic values. From one agent’s perspective, other
agents are part of the environment. Since we train all agents concurrently, their policies change
simultaneously and the perceived environment is non-stationary. To mitigate this, the critic gets the
other agents’ actions as an additional input (“centralized critic”), such that the policy evaluation
can explicitly account for other agents’ behavior (e.g., Lowe et al. 2017, Igbal and Sha 2019).

All agents represent a request-vehicle combination and are thus homogeneous. Accordingly,
they can share parameters and we need only one actor and one critic network for all agents (cf.
Igbal and Sha 2019). We can train those centrally, i.e., the total parameter update is given by the
sum of per-agent updates. Still, the forward pass of the actor network is independent across agents,
allowing for decentralized and parallelized execution, which is important for scalability.

Our method can handle a variable number of requests and thus a variable global action space
size, as we can use neural networks with parameter sharing for any number of agents in parallel
and the BMP does not require a fixed number of requests. The same holds true for the vehicles,
such that the system size when testing may differ from training (see appendix).

We provide details on the individual components of our method in the following.

3.1.2. Per-agent Post-processing and Global Matching

The actor network parameterizes a categorical probability distribution over the two actions that can
be taken for a request-vehicle combination: reject or accept. We post-process the actor output per
agent to transform it into a per-agent score, that we then use in the global weighted matching.
Algorithm 1 defines the post-processing. First, we mask infeasible actions by setting the ac-
cept probability p, to zero if the vehicle already has two assigned requests. Then, we sample a
reject/assign decision from the masked probability distribution; when testing, we instead take the
argmax of the probabilities. A reject decision (0 = 0) at the per-agent level implies a request-to-
vehicle reject decision at the global level, such that we set the respective score to zero. For an

accept decision, we use the accept probability as score!, such that a higher probability leads to a

VAt first sight, it might seem more intuitive to let the actor parameterize a continuous distribution, from which we
can take a sample to directly obtain the score, and/or have separate outputs for the reject/accept probability and
the score. We tested both approaches, but empirically observed that they perform worse than the variant described
here. If we choose one of those approaches, we cannot compute the terms in the loss functions (see Section 3.1.3)
which are an expectation w.r.t. the policy, i.e., 74 (a | s,4)T - (...), since the action space is not (purely) categorical
anymore. Then, we need to sample to estimate the expectation, as in the version of SAC for continuous action
spaces, which increases the variance. We hypothesize that this harms the algorithm’s performance and explains
our empirical observation.
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higher score for the weighted matching. An accept decision at the per-agent level does not always
imply an accept decision at the global level, as the matching might assign the request to a different

vehicle.

Algorithm 1 Per-agent post-processing
1: Input: p.,p, € [0,1]s. t.pr+p.=1; K

2: Output: score s

3. if 7r? # ¢f then

4: pr<—1,p, <0 > reject if already two assigned requests
5: end if

6: if training then

7: § ~ Categorical ((p;, pa)) = sample ¢ € {0, 1} when training
8: else

9: 0 —0ifp, = pa, 6 — 1lifp, < p, > argmax when testing
10: end if

11: if 6 = 0 then

12: 5«0 o> score 1s zero if rejected
13: else

14: S < Pa o> score is accept probability if accepted
15: end if

We use all agents’ scores to create a bipartite graph, with vehicles and requests as nodes, and
edges between all vehicle and request nodes for which we obtain per-agent accept decisions (i.e.,
s > 0). The edges’ weights correspond to the respective scores. We solve the resulting maximum
weighted BMP (formally defined in the appendix) using the Hungarian algorithm (Kuhn 1955) to

get a globally coordinated decision, where each request is assigned at most once.

3.1.3. Multi-agent Soft Actor-Critic

SAC is an entropy-regularized, off-policy actor-critic algorithm. It trains a stochastic policy 7 (a;|S)

with entropy maximization, incentivizing exploration through a random policy:

-1
7 = argmax E(g, q,)~r Z Profit (Sy,a:) + a H(mw (-] S}))
B t=0
The entropy of the policy is defined as H(w (-|S;)) = —Eq,~rlogm (a;|S;) and the entropy

coefficient a € R+ is a hyperparameter that controls the exploitation/exploration trade-off. While
SAC was originally developed for continuous action spaces in Haarnoja et al. (2018), it can also
be applied to discrete actions (Christodoulou 2019).

We chose to use an actor-critic algorithm to enable our multi-agent approach of decentralized
actors with centralized critics as explained in Section 3.1.1. Since exploration is paramount for our
problem setting, we use SAC, which lets us explicitly tune how much the policy explores.

We parameterize the actor network with parameters ¢ and the critic with 8. SAC uses two critic
networks, Q € {Q', Q?}, as well as corresponding target networks with parameters 6, which are

an exponential moving average of the primary parameters ¢. Based on the multi-agent approach as
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described in Section 3.1.1, the loss function for the actor with shared parameters is

Jo(¢) = Esup [le mg(als, i) - <a logmy(als, i) — ]Ielglng} {Qg (a]s,i, dl)})] )|
Here, we use a simplified notation for improved readability: we denote a transition by (s, a,r, s'),
with global states s, s, global action a (after the matching), and rewards r. For agent i, r; de-
notes its reward, a_; is the global action except for agent ¢’s action, and a is a per-agent action
(reject/assign), such that 74(a | s,7) € [0,1]> and Q) (a|s,i,a_;) € R?. We sample states (or tran-
sitions) from the replay buffer D and denote the discount factor by ~. For the actor loss, we do not
sample the global action from the replay buffer, but compute it based on the state s and the current
policy, as in Igbal and Sha (2019). For each of the two critics Q € {Q', Q?}, the loss function is

1 . 1.
JQ(Q) = E(s,ﬁ,r,s’)~D [Z 5 <Q9 (CL | 5,1, a—i) a - yz) ] 5 with

yi =15+ -7y (d | s/,i)T- <j£r{111121}{Qg (a'|s',i,a )} — alogmy (d'| S/,i)> :

Here, the notation |a- means “evaluated at a;”, i.e., of the two (-values that we compute for the two

possible actions of agent ¢, we use the one corresponding to the global decision a. The term after
7 is the V-value estimate for s’ based on 0, for which we compute the next global action @’ with
the current policy. The number of requests and thus the number of agents can change between
subsequent time steps. This poses a numerical problem for the critic loss computation, which
requires the same number of agents for s and s’. We solve this problem by amending the requests

in s’ when saving a transition to the replay buffer and provide details on this in the appendix.

The actor network obtains all vehicle states and requests for which a decision must be made
in the current time step as an input. To deal with these (potentially) many inputs, we train a
single request embedding and a single vehicle embedding to encode all requests and vehicles,
respectively. To account for the variable number of requests and to let each agent focus on the
parts of the input that are important for this particular agent, we equip the neural network with
an attention mechanism (cf. Holler et al. 2019, Kullman et al. 2022). Together with the request
and vehicle embeddings for the agent and additional features, we pass the context computed by
the attention mechanism to a sequence of feedforward layers. The critic network has the same
architecture, but receives the global action as an additional input. We remove the action of the
agent from this input, since the critic outputs (-values for both possible actions. Further details on
the neural networks, e.g., a formal description of the attention mechanism and hyperparameters,

can be found in the appendix.

3.2. Method with Global Rewards

Since the per-agent, local rewards, which we use in the method developed so far (the LRA), can
lead to sub-optimal behavior from a central operator’s perspective that aims at maximizing the

system-wide profit, we extend our algorithm to use global rewards.
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We can follow a naive approach to include global rewards in training by replacing the per-agent
rewards with global rewards when training the critic, resulting in a basic global rewards algorithm
(GRA). We obtain global rewards by summing the profits of all agents at one time step. As this
number can be substantially larger than per-agent rewards, we divide it by the average number of
non-zero rewards per observation in the replay buffer to stabilize learning. Straightforwardly using
this approach leads to a credit assignment problem, as the reward given to agents now depends on
the actions of all agents, which generally complicates an agent’s learning task. To mitigate this,
we explore a credit assignment paradigm in the following.

Here, we focus on reward marginalization and show how to modify the existing Counterfactual
Multi-Agent Policy Gradient (COMA) paradigm to combine it with SAC for discrete actions (Sec-
tions 3.2.1 & 3.2.2). Afterwards, we discuss how to scale the resulting algorithm to large-scale

instances (Section 3.2.3).

3.2.1. Naive COMA

A suitable credit assignment paradigm for our setting is COMA, proposed by Foerster et al. (2018).
COMA fits our setting best, because it has a similar structure as SAC and is especially suitable for
small per-agent action spaces. Following the main rationale of COMA, agents should maximize
their contribution to the global reward instead of maximizing the global reward directly. As ob-
taining global rewards for several actions is computationally infeasible, COMA trains the critic
on global rewards to approximate global state-action-values. The contribution of an agent to this
global value is defined as the value of taking an action in contrast to the value of taking a default
action. This default action is calculated as the policy-weighted average value of all possible actions

the agent can take (counterfactual baseline). The advantage function of COMA therefore is

Ailai]s,1) = Qolails, a—s) — Y mo(ails, i) Qolails, ay).

In this and all following equations, a; an action agent i can take as a reject/accept decision before
the global matching, a; the action the agent actually takes, and @_; the actions of all agents except
agent ¢ after the global matching.

Foerster et al. (2018) use a sampling-based approach to estimate the actor loss function and
base its computation only on the action taken by the agent. The loss function thus reads J,.(¢) =
Eswp [Z cAiails, z)] . In contrast to that, we use SAC with discrete actions, considering all possible
actions of an agent in the actor loss function in Equation (2). To use credit assignment via COMA
in combination with the proven reliability and low variance of SAC, we need to integrate the
baseline of COMA into the loss function of SAC. In the following, we use 7(a;) := my(a;|s, ) and
Q(a;) := minjeq 9 {Qg(ai|s, EL_Z')} for conciseness. Then, considering one instance of a batch

and one agent, our actor loss function extended by the advantage function of COMA reads

Te(@ls,i) = Y m(a;) | elogm(a;) — Q(a;) + >, 7(al) Q(a}) |. 3)

a;



36 Hybrid Multi-agent Deep Reinforcement Learning for Autonomous Mobility on Demand Systems with Local and Global Rewards

Proposition 1. The loss function J.(p|s, i) as defined in Equation (3) is equivalent to the entropy,
Jr(@ls,1) = 32, m(a;) alogm(a;), of a plain SAC architecture.

For a proof of Proposition 1, we refer to the appendix. Accordingly, using the loss function in
Equation (3) does not allow to learn a meaningful policy, such that we cannot straightforwardly
apply the COMA paradigm to our SAC framework. This observation motivates us to study a novel
approach to combine SAC for discrete actions with the COMA paradigm to learn a good policy

with global rewards.

3.2.2. Adjusted COMA for SAC Architectures

To solve the convergence problem outlined above, we have to adjust the loss function in Equa-
tion (3). Using only the action taken by the agent for the loss function as in Foerster et al. (2018)
does not lead to convergence even in small experimental instances, as it increases the loss func-
tion’s variance. We therefore adjust 7(a)), changing the weighting of the default action in the
baseline. This is possible from a theoretical perspective, as the exact specification of a default
action is not derived from the idea of difference rewards (Wolpert and Tumer 2001), but left to the
discretion of the user.

Straightforwardly, we can define the default action by using an equally-weighted average instead
of a policy-weighted average, resulting in the advantage function A7 (a;) = Q(a;) =3, ~-Q(aj),
with n,, being the number of actions per agent. We call this algorithm COMA®*®", Whiéh r1ésolves
the convergence problem, but has a disadvantage: when the actor network estimates different
probabilities for single actions, weighting all actions equally is not a reasonable default action.
This problem is especially pronounced during late training, when the actor network is better at
estimating action probabilities. We solve this issue by defining a second default action with the
use of a target actor network ¢. This network has the same structure and initialization as the
actor network ¢ and is updated using exponential averages of the actor network’s parameters,
similar to target networks in Q-learning. The advantage function of this algorithm (COMA'®") is
A (a;) = Qa;) — Za; 75(a;) Q(al). Since ¢ differs from ¢, this algorithm solves the convergence
problem as well. During early training, COMA"' is not as suitable as COMA®*®, since the sub-
optimal action probabilities of an untrained target actor network are a disadvantage compared to
equally-weighted actions. Later in training, ¢ can estimate better action probabilities, making
COMA"" superior to COMA®",

Since we now have one algorithm especially suitable for early learning and one especially suit-
able for later learning, we combine these two and obtain COMA* based on a dynamic combina-
tion of the two newly introduced advantage functions. The advantage function of COMA™ thus

reads
A(a;) = (1 - B)AS™(a;) + BAE (ay)
- Q) ~ (1= )Y == Qla) — B Y molal) Qla).

!
a;
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Here, the hyperparameter 3 € [0, 1] is the weight of the COMA'®' baseline and follows a schedule,
starting at zero and ending at one (for details, we refer to the appendix). Then, the loss function of
COMA®™ reads

JE(]s, 1) = Y m(ar) (alogmlai) — A(a))

With this loss function, COMA® solves the credit assignment problem. In our experiments,
COMA® performs better than LRA, but has a scalability problem: when the number of agents
increases beyond medium-sized problem instances, COMA®¥ fails to converge. Reasons for this
are the diminishing influence of a single agent on global rewards and the overlap of many agents’
actions when the number of agents increases, making learning per-agent Q-values difficult (cf.
Rashid et al. 2018). We therefore investigate how to scale COMA™.

3.2.3. Reward Scheduling

Usually, one could resolve the scalability problem of COMA® straightforwardly by adjusting the
critic to accommodate value factorization (e.g., Su et al. 2021), but this approach is infeasible in our
setting as the number of agents is variable. Similarly, learning the critic on a static mix of local and
global rewards in a local-global rewards algorithm (LGRA) does not solve the scalability problem,
since any non-negligible share of global rewards distorts learning when increasing the number
of agents. In addition, reward marginalization with a counterfactual baseline is problematic for

partially local rewards.

Instead, we can train a single actor network using a weighted average policy loss function,
consisting of the loss function for LRA in Equation (2), here denoted by J'%¢(¢|s, i), and COMA®¥,
The loss function thus reads

T¥(els, i) = (1= k) J2(dls, i) + K JH(9]s, 1),
with x € [0, 1] being the weight of the loss function of COMA™Y. Again, k follows a sched-
ule increasing linearly, following a polynomial pattern or jumping from zero to one at a specified
point (for details, we refer to the appendix). This leads to a new algorithm, we call it COMA®®,
COMA®*“ solves the scalability problem, as it enables the learning of global Q-values when in-
creasing the number of agents. The reason this works is the utilization of experience collected
following a mixed policy: this way, more diverse experience is available than if using solely own
experience, thus improving learning without the destabilizing influence of increasing the entropy.
We can therefore train four critic networks from the beginning on, two for local and two for global
rewards. Two networks each are necessary for SAC, where we always use the minimum of the two
state-action-values to avoid value overestimation. Due to the influence of both local and global
rewards, COMA® can sometimes have a lower performance than algorithms purely based on
global rewards, but makes up for this by being as scalable as LRA, thus sacrificing a portion of its

performance for scalability.
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4. Numerical Studies

Firstly, we introduce our experimental design and present and discuss results for the LRA. Sec-

ondly, we present the numerical study of our algorithm(s) incorporating global rewards.

4.1. Numerical Studies with Local Rewards
4.1.1. Experimental Design

To validate our method, we perform experiments based on historic taxi data that is publicly avail-
able for New York City (NYC TLC 2015). We use a hexagon grid for spatial discretization and
consider two different instances: one with 11 small zones (approx. 500 meters distance between
neighboring zones) and one with 38 large zones (approx. 1 km distance), both in Manhattan. We
consider the time interval from 8:30 am to 9:30 am during morning rush hour as one episode. Our
data set contains data for 245 different dates in 2015, which we split into 200 training dates, 25
validation dates, and 20 test dates. We use a time step size of one minute and choose revenue
and cost parameters such that a vehicle that serves a customer without empty driving achieves an
operating profit margin of 10%. We consider different numbers of vehicles to simulate different
degrees of supply shortage; only cases with supply shortage are interesting, as the operator can
serve each request immediately in the case of infinite supply, such that a myopic policy would be
sufficient. For additional details on the data set, system setup, and hyperparameters, we refer to
the appendix.

To benchmark our method, we compare its test performance against two “classical”, non RL-
based, algorithms: a greedy policy and an MPC approach. The greedy policy accepts any request
that can be served with a positive profit (accounting for the cost for empty driving to the pickup
location) and rejects all others. It is a reasonable choice when there is no reliable estimate of
future requests. If we have such an estimate, it is promising to apply MPC (see, e.g., Alonso-
Mora et al. 2017). We adapt this approach to our setting, using a request distribution estimate for
mixed-integer-based receding-horizon optimization. Details on both benchmarks can be found in

the appendix.

4.1.2. Results and Discussion

We provide plots illustrating the training process in the appendix. Figure 3 summarizes the per-
formance of greedy, MPC, and our RL method on the test data for all considered instances. On
average, our RL method always outperforms the greedy policy, by up to 5% over the 20 test dates.
For individual dates, RL outperforms greedy by up to 17%. It performs by at most 6% worse than
greedy for less than 20% of the individual dates. MPC is (substantially) worse than greedy and RL
in many cases, although it sometimes outperforms the RL method. This means that MPC can pro-
vide a benefit in certain situations, but comes with an unstable performance across instances, which

limits its practical applicability. In particular, MPC does not perform well in situations where there



Hybrid Multi-agent Deep Reinforcement Learning for Autonomous Mobility on Demand Systems with Local and Global Rewards 39

MPC vs. greedy RL vs. greedy MPC and RL vs. greedy
(11 small zones) (11 small zones) (38 large zones)
10% .
g | o] -

. [g° 0 50 ° -
~LET g Lk
-50% ’ 5o * . . 0% ER :

—75% 0% =73 o -5% wpe
~100% | 5% | PPV I * RL
8 16 24 40 80 8 16 24 40 80 50 100 150 250
Number of vehicles Number of vehicles Number of vehicles

Figure 3: Test performance of MPC and our RL method compared to greedy (greedy is 0%, values < 0%
indicate a performance worse than greedy). Each dot represents one test date.

is a large shortage of vehicles, which are handled well by our RL method. Thus, our method pro-
vides a stable alternative, that always achieves at least the greedy performance and outperforms
it by a substantial margin in many cases. Note that the order of magnitude of this performance
improvement is significant for our application area (cf. Sadeghi Eshkevari et al. 2022). Given
the large scale at which AMoD systems operate, the seemingly small percentage improvements
translate into significant monetary value for the operator.

Figure 4 shows the performance of MPC and RL for the instance with 38 large zones and dif-
ferent amounts of training data, i.e, different estimation qualities of the request probability distri-
bution. Since our problem setting excludes fixed costs, additional resources, i.e., vehicles, are free
of charge. Thus, the greedy policy performs better with very few or many vehicles, compared to
instances with a medium number of vehicles. With few vehicles, many requests are available for
each vehicle, such that vehicles are rarely idle or drive without a customer. With many vehicles,
most requests can be served quickly without empty driving because vehicles are usually available.
Consequently, with sufficient training data, for both MPC and our RL approach, the performance
gain vs. greedy is largest for a medium number of vehicles. However, with few vehicles, MPC per-
forms worse than greedy, as it is not robust against mistakes when sampling future requests. Such
errors have a larger effect with fewer vehicles. With less training data, the performance gain of our
method decreases by about one percentage point, but it remains reliably better than greedy. For
all instances except the 250 vehicles case, the performance loss is much larger for MPC; it is not
always able to sustain a performance better than greedy, even for instances where it outperforms
greedy with more training data. With 250 vehicles, there are many resources free of charge, such
that the mistakes made by MPC have such a small effect that it is robust against a poor estimation
quality. Based on these observations, we conclude that our RL method is more robust against a
poor estimation quality due to insufficient training data than MPC. These results might seem sur-
prising, as RL is in general not very sample-efficient—although SAC has better sample-efficiency
than most policy gradient-based algorithms, since it is an off-policy algorithm and uses a replay
buffer. However, for our problem setting, less training data does not mean that the RL agents must
learn from fewer samples, as the available training data can be replayed multiple times in the sim-

ulated environment. The performance loss that we observe for the RL method is more likely due
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Figure 4: Mean test performance of MPC and RL vs. greedy as a function of the KL-divergence between
the true request distribution and the distribution estimated from the training data (with different
amounts of training data, resulting in different KL-divergence values). We use the request distribu-
tion estimated from the real data for 38 large zones as the true distribution and run the experiments
with synthetic data sampled from this distribution.
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Figure 5: Time to compute one action (mean over 60 steps, based on 38 large zones, number of requests scaled
with number of vehicles). MPC solve refers to solving the MIP, MPC total also includes the generation
of the MIP instance in each step.

to the decreasing diversity of the training data to which the RL agents are exposed, leading to less
generalization.

Finally, a major advantage of our RL method over MPC is its shorter computational time during
execution. We can train the network parameters offline in advance and easily scale the online
execution, because the per-agent actor computations are fast and straightforward to parallelize.
Figure 5 shows that although we solve a combinatorial optimization problem in each time step,
the computational time of our method is very short even for large system sizes. On the other
hand, the computational time of MPC increases quickly for large instances: for 3000 vehicles, the
action computation for a single step takes more than 30 seconds with MPC, while our RL method
(including the matching) takes less than 0.2 seconds. Thus, the practical application of MPC at
scale is greatly limited by its computational time, while our RL. method can be scaled to much

larger system sizes.

4.2. Numerical Studies with Global Rewards

For the experiments with global rewards, we use a similar experimental design as before, but
now additionally consider an operating area with five small zones. In this realm, we study five
instances: two edge cases with high (5 zones, 15 vehicles) and low (11 zones, 6 vehicles) request
acceptance rates, two medium-sized instances (11 zones, 18 and 24 vehicles), and a comparatively
large instance (38 zones, 100 vehicles). For further details on the experimental design, as well as

hyperparameters, we refer to the appendix.
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Firstly, we test COMA®** on all five instances and benchmark it against LRA and the greedy
algorithm. Secondly, we present an ablation study to show the superiority of COMA**® over our
alternative algorithms that use global rewards. Thirdly, we discuss why COMA** outperforms
LRA.

4.2.1. Performance of COMAS®

We present results of our tests of COMA* in Figure 6 and Table 1. In all instances except the one
with 11 zones and 6 vehicles, COMA* outperforms LRA and the greedy algorithm on average, the
former by up to 1.9% and the latter by up to 3.5%. On single test dates, COMA*“ can outperform
LRA by up to 6%. This improvement is significant, as the Wilcoxon p-values are at most 5% for

the respective instances.

5 zones, 15 veh. 11 zones, 6 veh. 11 zones, 18 veh. 11 zones, 24 veh. 38 zones, 100 veh.
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Figure 6: Relative test performance A [%] of COMA® vs. greedy and LRA for multiple test dates.
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5 zones | 11 zones | 11 zones | 11 zones | 38 zones

15 veh. 6 veh. 18 veh. | 24 veh. | 100 veh.

vs. LRA 0.5% -0.2% 0.2% 1.9% 0.6%
p-value 0.05 0.52 0.22 0.00 0.00
vs. greedy 2.5% 2.8% 2.8% 3.5% 2.4%
p-value 0.00 0.00 0.01 0.00 0.00

Table 1: Mean test performance improvement of COMA®? vs.
Wilcoxon p-values.

LRA and greedy, including the respective

In the instance with a high acceptance rate (5 zones, 15 vehicles), the significant performance
improvement of COMA®**® compared to LRA is an especially positive result, as a vehicle is usually
available for each request in this instance, limiting the improvement potential for DRL. In the
instance with a low acceptance rate (11 zones, 6 vehicles), the improvement potential is similarly
limited, as vehicles are rarely idle. Consequently, the performance of COMA®* is most similar to
LRA in this instance. In contrast, the instance of 11 zones and 24 vehicles has a balanced ratio
between the number of vehicles and requests. Here, the performance improvement of COMA®**
is the largest of all instances, outperforming LRA by on average 1.9% and greedy by on average
3.5%. In the large instance (38 zones, 100 vehicles), COMA®*“ significantly improves performance

by on average 0.6% compared to LRA, proving that the algorithm is applicable to large-scale
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environments. The lower performance improvement can be explained by the weight of COMA®¥
being required to increase more slowly in the loss function of COMA®** when the number of agents

increases.

4.2.2. Ablation Study

In the following, we discuss the performance of all proposed algorithms with respect to numeri-
cal stability and scalability across random seeds (Table 2) as well as computational performance
(Table 3 and Figure 7). As can be seen in Table 2, all algorithms show stable convergence for
the small instances, while all but LRA, LGRA, and COMA®** exhibit stability issues already for
medium-sized instances, failing to converge for one-third of the seeds and requiring about ten
times as many training steps to converge compared to LRA for the remaining seeds. In contrast,
LGRA and COMA* converge on all seeds and require comparable to at maximum twice as many
training steps compared to LRA. For the large instance, only COMA*“ and LRA converge, with

COMA®* again requiring similar to twice as many training steps.

5 zones | 11 zones | 11 zones | 11 zones | 38 zones

15 veh. | 6 veh. 18 veh. | 24 veh. | 100 veh.
GRA v v O O -
COMA® v v O O _
COMA* v v O O _
COMA®™ v v O O -
LGRA v v v v —
LRA v v v v v
COMA™? v v v v v

Table 2: Convergence of algorithms. v denotes stable convergence, O unstable convergence (across random
seeds), — no convergence.

Figure 7 and Table 3 show the relative performance of all algorithms compared to COMA®* for
the medium-sized instances over seeds for which all algorithms converged. As can be seen, the
results are mixed: while pure global-rewards-based algorithms outperform COMA®* on average
on the 18 vehicles instance, COMA**“ outperforms all other algorithms on the 24 vehicles instance.
To understand this ambiguous effect, we need to detail the algorithms’ convergence behavior: in-
creasing the instance from 18 to 24 vehicles technically requires to train 570 instead of 430 agents,
which significantly challenges all purely global-rewards-based algorithms. In fact, if one looks
at the variance of the validation reward of each algorithm (see appendix), we observe converging
but less stable learning behavior for all purely global-rewards-based algorithms, which explains
the respective performance drop. While this observation manifests the robustness of COMA®* at
a performance that improves upon local-rewards-based algorithms, it also points at a promising
direction for future research: if one manages to stabilize and scale the purely global-rewards-based

algorithms, one will most likely obtain even better performing algorithms.
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Figure 7: Relative test performance A [%] of all algorithms vs. COMA®,

11 zones
18 vehicles 24 vehicles
GRA | 1.2% (0.02) | -2.7% (0.01)
COMA®® | 0.7% (0.03) | -3.5% (0.04)
COMA | 2.3% (0.00) | -1.5% (0.23)
COMA™ | 0.3% (0.42) | -1.2% (0.41)
LGRA | 2.3% (0.00) | -1.3% (0.55)

Table 3: Test performance of algorithms vs. COMA®* (Wilcoxon p-value).

4.2.3. Structural Analysis

Finally, we aim to understand the performance difference between the studied algorithms by an-
alyzing the respective policy characteristics in Table 4, which details request rejection rates for
LRA, the pure global-rewards-based algorithm COMA* and COMA*?. As can be seen, both
COMA-based algorithms have a lower rejection rate compared to LRA, which explains their im-
proved performance. This finding, as well as the relation between COMA*® and COMA®™Y, are
in line with the performance shown for the 24 vehicles instance in Figure 7. To understand op-
erational intricacies, we further analyze the difference between average rejection rates of empty
destination zones and zones that contain more than two vehicles upon a request’s arrival, which
is 3.8% for LRA, 6.4% for COMA®Y, and 4.9% for COMA®. This indicates a stronger focus
of COMA*? and COMA®¥ on implicit vehicle balancing, as these algorithms are more reluctant
to send vehicles to already crowded zones. Such a focus on vehicle balancing stems from global
reward structures and partially explains performance improvements: if vehicles are unbalanced,
less overall requests can be served; individual vehicles might still obtain high local rewards, but

the global reward decreases.

measure LRA | COMA™ | COMA*
rejection rate 17.6% 16.6% 15.5%
— rejection rate for destination zones without vehicles | 16.4% 12.9% 13.6%
— rejection rate for destination zones with >2 vehicles | 20.2% 19.3% 18.5%
ratio of overperformance rejections / acceptances 1.75 1.87 1.27

Table 4: Rejection rates of generally profitable requests on the instance with 24 vehicles.
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Beyond implicit balancing, we analyze the algorithms’ anticipative performance, i.e., their ca-
pability to foresee future demand and consider it during decision-making. To do so, we analyze an
algorithm’s overperformance ratio (see Table 4), which compares the summed theoretical profits of
future requests in the same zone following acceptance or rejection of an initially profitable request.
We calculate this ratio by dividing the total theoretical profit after rejections by that after accep-
tances (see appendix for details). As can be seen, COMA®¥ has the highest overperformance ratio,
followed by LRA and COMA®*, From the higher ratio, we conclude that COMA has better
forecasting abilities, as requests after rejections are more profitable than requests after acceptances
under its policy. In contrast, COMA® appears to suffer from the mixture of local and global re-
wards, which can explain some of the performance gaps compared to algorithms with purely global
rewards. A possible reason for the better forecasting abilities of COMA®¥ is that global Q-values
incorporate more prescriptive information: since global rewards are less dependent on the actions
of individual agents, it is easier to infer information about demand from them, such that agents

trained using global Q-values might have access to better demand predictions.

5. Conclusion

We consider the dispatching problem of a profit-maximizing AMoD operator with centralized con-
trol over a fleet of autonomous vehicles, who accepts (and serves) or proactively rejects requests
in real-time. To solve this problem, we use a combination of multi-agent SAC with local rewards
with centralized final decision-making through weighted matching. Our experiments based on
real-world data show that our method outperforms two strong benchmarks on most problem in-
stances, that it is stable across these instances and robust against a poor estimation of the request
distribution, and that it can be easily scaled to large system sizes. We extend our method to train
with global rewards, using credit assignment based on a novel counterfactual baseline, and show
that this further improves performance. Finally, we provide a structural analysis which shows that
the use of global rewards can improve implicit vehicle balancing and demand forecasting abili-
ties. Our proposed algorithm is applicable beyond the area of AMoD, as it can be useful in any

application where multi-agent DRL with credit assignment is required.
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A. Method

In the following, we provide complementary details on our method. First, we describe how we
assign per-agent rewards. Second, we formally define the weighted BMP. Third, we explain our
solution to the dimensionality problem in the critic loss computation. Fourth, we provide additional
details on the neural networks. Fifth, we give an overview of alternative approaches to post-
processing and weighted matching which we tested and discarded. Sixth, we provide the proof of

Proposition 1.

A.1. Per-agent Rewards

Agents observe their own (egoistic) rewards. When matching agents, we can already compute the
(potentially negative) profit that will result from the decision to assign a certain request to a certain
vehicle. This profit consists of the revenue that will be obtained for the request, minus the opera-
tional costs to drive from the vehicle’s position after it finished serving its current request (if any)
to the new request’s origin and the operational costs to drive from there to the new request’s desti-
nation. If a request is matched to a vehicle at the global level, the corresponding agent immediately
observes this profit as the reward. All agents for which the request is not matched to the vehicle
at the global level observe a reward of zero. The sum over all these per-agent rewards equals the
system reward, although we virtually forward rewards in time. When we sample transitions from
the replay buffer, we normalize the sampled rewards by dividing them by the standard deviation of
all rewards currently stored in the replay buffer (cf. Kurin et al. 2022).

A.2. Bipartite Matching Problem

At time step ¢, the weighted BMP is formally defined as

Ry K
max Z Z Sij - Tij

i=1j=1

Ry

sty @y <1 forall je{l,. K},
=1
K
inj <1 forall ie{l,.., R},
j=1

where s;; is the score computed for request tr* and vehicle k7, and the decision variables are

x;; = 1if 'r" is assigned to k7 and x;; = 0 otherwise.

A.3. Critic Loss Computation Despite Variable Number of Agents

The number of agents changes between time steps, since the number of requests varies over time.

However, for the TD-update of the ()-function, we need the same number of agents at time ¢ and
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t + 1. Thus, when adding transitions to the replay buffer, we replace the requests state for ¢ + 1
by the requests state for ¢ to obtain a matching number of agents. Given the small time step size,
it is strongly stochastic which requests occur at which time step, and the underlying distribution
can be assumed to be very similar for two consecutive time steps, such that the requests at ¢ are in

expectation a similarly realistic sample for ¢ + 1 as the requests which we actually observe.

A.4. Neural Networks

We first describe the features which we use as inputs to the neural networks. We identify the
zones which we use for spatial discretization by a horizontal and a vertical index. All locations
(e.g., the request origin) correspond to one of these zones. We encode them by a vector with
the horizontal and the vertical index, each normalized to [0, 1]. We also tried to use sinusoidal
positional encodings (cf. Vaswani et al. 2017) instead, but this did not improve the performance of

our method. A request encoding then consists of:

* The encoding of the request origin

* The encoding of the request destination

* The distance from origin to destination on the graph G, normalized to [0, 1]
We encode a vehicle state by:

* The encoding of the vehicle’s position, where we use the current position of the vehicle if
it does not have an assigned request or the destination of the assigned request that will be

served last
* The number of time steps left to reach this position, normalized to [0, 1]
* The number of assigned requests, normalized to [0, 1]
Apart from request and vehicle states, we use some additional features:
* The current time step, normalized to [0, 1]

* Aflagin {0, 1} indicating if the vehicle under consideration will be able to serve the request

under consideration within the maximum waiting time if it is matched to the vehicle

* The time steps to reach the position summed over all vehicles, normalized to [0, 1], indicating

how busy the fleet currently is

* The number of requests placed since the current episode started, divided by the count of
requests that are placed on average until the current time step, indicating how much demand

was observed compared to an average episode
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Next, we describe the actor network. The request and vehicle encodings are used as the input
for the request and vehicle embeddings, respectively. Both the request and the vehicle embedding
are a feedforward layer with 32 units and ReLU activation. We denote the resulting embedding
vectors by e,.i, i € {1, ..., R;}, and ey, j € {1, ..., K'}. The attention mechanism computes a global
context, which is the concatenation of a requests context and a vehicles context. The requests
context is computed as ¢, = 221 Bri - €,i with i = o (w, - tanh (W, - e,:)) € R, where o is
the sigmoid activation function and w, € R as well as W, € R?5*32 are trainable parameters
(the parameters are the same across all requests). The vehicles context is computed as ¢, =
S Bri - exs with B = o (wy, - tanh (W, - €4:)) € R and trainable parameters wy, € R,
W) € R128%32 (the parameters are the same across all vehicles). Thereby, we obtain a fixed size
global representation of variable sized inputs. The structure of the embeddings and the attention
mechanism is similar to Holler et al. (2019), Kullman et al. (2022). We use the global context as
well as the request and vehicle embedding corresponding to the agent under consideration together
with the aforementioned additional inputs as the input to a sequence of feedforward layers. We
use five layers with ReLLU activation and 1024, 512, 128, 32, and 8 units, respectively, followed by
the output layer of size 2 with softmax activation. For all layers, we use L2 regularization with a
regularization coefficient of 10~%. We chose the specific architecture (number and size of layers)
through hyperparameter tuning.

The critic networks are identical to the actor network except for the following differences: For
all request and vehicle states that do not correspond to the agent under consideration, we add the
action to their encodings. For the requests, this is a flag in {0, 1} indicating if the request was
rejected or accepted. For the vehicles, this is the origin and destination of the request that was
newly assigned to the vehicle (zeros if no request was newly assigned to the vehicle). Moreover,
we use the request and vehicle states of the agent under consideration as inputs to the feedforward
layer of size 1024, but not for the embedding and attention layers. Finally, there is no activation

function in the output layer.

A.5. Alternatives to Post-processing and Weighted Matching

We tested two alternatives to our weighted matching approach to obtain a global decision from
the per-agent actor network outputs: generating a global probability distribution and non-weighted
matching.

For the global probability distribution, we use the per-agent reject/accept probabilities to con-
struct the joined probability distribution over all feasible global decisions. We then sample, by
taking the argmax when testing, from the global distribution to obtain a global decision. While this
approach removes the need for a combinatorial optimization algorithm and gives promising results
on very small instances, it becomes intractable quickly due to the exponentially increasing size of
the global action space.

For the non-weighted matching, we post-process the per-agent actor network outputs as de-

scribed in Algorithm 1, but do not use scores to construct a weighted bipartite graph. Instead,
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we create a non-weighted bipartite graph based on the per-agent reject/assign decisions ¢ and use
a maximum (non-weighted) bipartite matching algorithm to obtain a global decision. While this

approach is scalable, it performs worse than the weighted matching variant.

A.6. Proof of Proposition 1

The combined loss function of SAC and COMA for one instance of a batch and one agent is

a;

Te(ls,i) = Y mla;) | alogm(a;) — Q(a:) + ) w(af) Qaf)

Considering the last summand separately, we get

2 mlas) Y im(a)) Q(ay)

a; A
(3 al

=m (M Q1+mQas+ ... +TQn)+ ...+, (M Q1+ m Qs+ ... + 7, Q)
:Wle—|—7T17T2Q2+...+7r17TnQn+7T27T1Q1+...+7rn7T1Q1+...+7riQn
=7T1Q1 (7T1—|-71'2+...+7Tn)+...+7TnQn(7T1+7TQ+...+7Tn)

= Zﬂ(ai) Q(a;).
a;
Inserting that into the loss function, we obtain

Te(¢]s,i) = > 7(a;) alogm(a;) — Y m(a:) Q(a;) + Y m(a;) Q(a;) = Y w(a;) alog m(as),

aj aq a;

which is just the entropy. If the loss function equals the entropy, the actor is not trained to maximize
the probabilities of actions associated with the highest Q-values and thus cannot learn a meaningful
policy. Note that this problem occurs for an arbitrary number of n actions per agent (as displayed),

including our setting with n = 2 actions.

B. Experiments

In the following, we provide complementary information on our experiments. First, we give more
details on the system setup and how we pre-process the real-world taxi data set. Second, we state
the hyperparameter values used in our experiments. Third, we discuss the dynamic weighting
of the loss functions in the different variants of COMA. Fourth, we provide details on the two

benchmark algorithms. Fifth, we explain how we calculate the overperformance ratio.
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B.1. Data Set and System Setup

We use yellow taxi trip records from the year 2015 and exclude weekends and holidays. We assume
that requests are placed at the time reported as the pickup time in the data set. Besides, we use
the pickup and dropoff longitude/latitude from the data set and keep only trips for which pickup
and dropoff coordinates are located on the main island of Manhattan. We discretize space with a
hexagon grid as shown in Figure 8. We assign a pickup and dropoff zone to each request based on
the shortest distance from the longitude/latitude coordinates and remove trips that start and end in

the same zone.

11 small zones 38 large zones
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Figure 8: Hexagon grid laid over Manhattan for spatial discretization. The operating areas which we consider
are marked in green.

Each zone is represented by a node in the graph G, that contains edges only between nodes
that represent neighboring zones. The distance between neighboring zones is 459 meters and 917
meters for the small and large zones, respectively, and we assume a travel time of two and five time
steps based on a realistic average driving speed. When vehicles travel between non-neighboring
zones, they take the shortest route on G.

We consider the two operating areas depicted in Figure 8, i.e., we consider only requests that
have a pickup and dropoff location within the green area. For the 38 large zones, we downscale

the trip data by a factor of 20, i.e., we use only every 20" request for our simulation, to have a
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system size suitable for the hardware that we used for the experiments. On average, this results in
360 requests per episode for the 11 small zones instance, with up to 23 requests in a single time
step. For the 38 large zones instance, we observe 828 requests per episode on average, with up to
20 requests in a single time step. Note that the mean trip distance is larger for the 38 large zones
instance, such that the number of vehicles required to serve a certain number of requests is larger
than for 11 small zones. For the instance with five zones, we consider the southern five of the 11
small zones, with a maximum of seven requests per time step.

We assume a maximum waiting time of five minutes. To achieve an operating profit margin of
10% when a request is served without empty driving to the pickup location, we set the revenue to
5.00 USD per km and the operational costs to 4.50 USD per km. Note that these numbers might be
considered to be unrealistic, but can be scaled to a different level without any effect on the control
problem and our results, since we report all results relative to the greedy performance.

With the eight to 80 vehicles which we consider for the experiments with local rewards and 11
small zones, the greedy policy serves 27% to 78% of the requests. For the 38 large zones with 50 to
250 vehicles, the greedy policy serves 30% to 76% of the requests. For the experiments with global
rewards, the greedy policy serves 78% of the requests in the 5 zones and 15 vehicles instance, 22%
in the 11 zones and 6 vehicles instance, 47% in the 11 zones and 18 vehicles instance, 55% in the

11 zones and 24 vehicles instance, and 50% in the 38 zones and 100 vehicles instance.

B.2. Hyperparameters
B.2.1. Hyperparameters for Experiments with Local Rewards

We train for 200,000 steps, update the network parameters every 20 steps, and test the performance
of the current policy on the validation data every 2,880 steps (48 episodes). During the first 20,000
steps, we collect experience with a random policy and do not update the network parameters.

For the critic loss, we use the Huber loss with a delta value of 10 instead of the squared error.
Moreover, we use gradient clipping with a clipping ratio of 10 for actor and critic gradients. We
use the Adam optimizer with a learning rate of 3 - 10~%. We sample batches of size 128 from a
replay buffer with maximum size 100,000. We set the discount factor to 0.9 since this gives a better
and particularly more stable performance than other values which we tested. For the update of the
target critic parameters we use an exponential moving average with smoothing factor 5 - 1073, We
tune the entropy coefficient individually per instance and use values between 0.35 and 1.3 across
the experiments reported in this paper.

We repeat each training run with multiple random seeds and use the model with the best vali-
dation performance across runs to test the performance of our method on the test data set. Results
reported throughout this paper correspond to these test results. For the 11 small zones instance, we
use five random seeds, while we use three random seeds for the 38 large zones instance.

The MPC results are based on an average over multiple random seeds. For the results in Figure 3,

we use five random seeds, while we use three random seeds for the results in Figure 4.
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B.2.2. Hyperparameters for Experiments with Global Rewards

We mostly use the same hyperparameters as before, only adjusting the entropy coefficient, the
learning rate, and the total number of training steps.

We train models until their validation performance is stable and does not increase further. De-
pending on the instance and algorithm, this results in 200,000 to 2,000,000 training steps. The
number of required steps increases with the instance size, i.e., with the number of zones and vehi-
cles. Across instances, LRA, COMA*? and LGRA require 200,000 to 400,000 steps, while GRA,
COMA®®, COMA'¢" and COMA™ require 200,000 to 2,000,000 steps.

We separate the learning rates for actor and critic, as global rewards and the inclusion of a base-
line can change the models’ convergence properties. Tuning the learning rates for each instance,
we set both learning rates to 3 - 10~ for LRA and to values between 3 - 10~* and 2.4 - 10~3 for
GRA. For the algorithms based on COMA (COMA*", COMA"', COMA*!, COMA*), we set
the learning rates to values between 6 - 10~% and 1.8 - 1073, with the actor having higher learning
rates than the critic. We further tune the entropy coefficient for each instance, with values ranging
between 0.37 and 1.5.

At the end of each training run, we test the model with the best validation performance on the
test data. We repeat each training run with three different random seeds and average test scores
over these random seeds. If a run does not converge to a reasonable performance, we exclude it

from the average. This only applies to some of the algorithms in the ablation study.

B.3. Training Schedules

The policy loss function of COMA® is a dynamic weighted average of the loss functions of
COMA®™" and COMA™, with 3 being the weight of the loss function of COMA"'. Over the
course of the training, 5 always starts at zero, ends at one, and can increase linearly or following
a power function. Since COMA"' shows better experimental performance than COMA®Y" (cf. the
ablation study), we test a power function with an exponent of 0.5 to increase the share of COMA™!
quicker than when using a linear schedule. In the instance of 11 zones and 18 vehicles, the max-
imum average performance of a model with a power function is 4.6% lower than the maximum
average performance of a model with a linear function. In the instance of 11 zones and 24 vehicles,
this number is 2.8%. We conclude that a linearly increasing  works best.

The policy loss function of COMA™*? is a dynamic weighted average of the loss functions of
LRA and COMA®Y | with « being the weight of the loss function of COMA!. Over the course of
the training, ~ always starts at zero and ends at one. It can increase linearly, following a power
function, or it can jump from zero to one at any specified point during training. We present results
of tests for different patterns of increasing « in Table 5. We draw four conclusions from these tests:
firstly, power functions generally lead to the best performance, which is most likely the result of
their smoother transition from local to global rewards in comparison to sudden jumps. Secondly,

quickly increasing power functions with exponents between 0.01 and 0.5 work best in all instances.
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instance | schedule type | exponent/jump | vs. best

power 0.01 0.0%

ower 0.05 | -1.5%

5 zones, 15 veh. gower 025 | -16%
jump 0.01 | -1.9%

power 0.25 0.0%

jump 0.01 | -0.7%

11 zones, 6 veh. power 0.125 | -1.6%
jump 002 | -2.1%

power 0.01 | -4.4%

power 0.25 0.0%

jump 0.1 -04%

jump 025 | -04%

11 zones, 18 veh. power 2.00 | -0.6%
power 1.00 | -1.2%

power 050 | -2.1%

jump 0.50 | -3.1%

power 0.25 0.0%

jump 0.125 | -1.0%

11 zones, 24 veh. power 0125 | -1.6%
power 1.00 | -1.7%

power 0.5 0.0%

power 1.00 | -0.2%

38 zones, 100 veh. power 0.25 -0.3%
jump 025 | -0.3%

Table 5: Performance of training schemes of COMA®**, relative to the best performance per instance. The
specifications used for the experimental results reported in the main body are displayed in bold writing.
The column exponent/jump denotes the exponent in case of a power function or the jump point relative
to the number of training steps in case of a jump schedule. For example, if the jump point is 0.25 and
the model is trained for 400,000 steps, « is zero for the first 100,000 steps and one for the remainder of
the training.

As a result of these quickly increasing functions, the share of COMA®¥ in the loss function rises
faster in the best models than it would when following a linear schedule. This shows that a quick
transition to global rewards enables utilizing their benefits for a larger part of the training. Thirdly,
the best exponents vary between instances, i.e., a per-instance tuning of the schedule to increase x
can lead to visible performance increases. Finally, the best performing exponent increases with the
instance size. We thus conclude that large instances require a slower transition from local to global
rewards to achieve best performance, in line with our results concerning the scalability problems

of global-rewards-based algorithms.

B.4. Benchmarks

We benchmark our algorithm against two well-known policies that are as follows.
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Greedy. The greedy policy considers requests in their arrival order. Whenever there is at least
one vehicle that will be able to serve the request within the maximum waiting time and with a
positive profit, the greedy policy accepts the request. If there is no such vehicle, the policy rejects
the request. The profit calculation takes into account the revenue from serving the request and
the cost to drive from the request’s origin to its destination, as well as the cost to drive from the
destination of the request that the vehicle currently serves (the position of the vehicle if it is idle)
to the origin of the new request. If there is more than one vehicle which fulfills these conditions,
the greedy policy assigns the request to the vehicle that will be closest to the request origin once it

has finished its current job.

MPC. We adapt the approach by Alonso-Mora et al. (2017) to our problem setting. First, for
each 15 minute interval, we estimate a probability distribution over origin-destination pairs from
the training data, i.e., we obtain the probability that a new request shall be picked up at this origin
and dropped off at this destination based on frequentist statistics. Here, we use Laplace smoothing
to mitigate a bias from potentially sparse data. In addition, we estimate the number of requests that
can be expected. We then use those estimates for online decision-making as follows: in each time
step, we observe the new (real) requests. In addition, for some sampling horizon, we sample the
expected number of requests from the estimated probability distribution (virtual requests). With
the current vehicle states, real and virtual requests, we solve an offline optimization problem,
maximizing for total profit assuming perfect information over the sampling horizon, with mixed
integer programming. The solution gives a decision for the real requests, which we use as the
action for the current time step. We repeat this process in a receding horizon fashion. We set the

sampling horizon to five minutes, which turned out to yield the best performance.

B.5. Calculation of Overperformance Ratio

We calculate the overperformance ratio as follows: firstly, we store the maximum profit of a request
if it is positive together with the origin zone of this request. This is the profit that would be
obtained if the request was served by the closest vehicle. Secondly, we store the theoretical profits
that would be obtained from subsequent requests originating in the same zone if a vehicle was
available at the same position as the vehicle closest to the original request. We store the theoretical
profits for the ten time steps after the original request appears. Thirdly, we obtain the overprofits
by subtracting the profit of the original request from the theoretical profits. We only count positive
overprofits subsequently, as we only consider requests that would be more profitable than the
original request. We sum these overprofits conditional on whether the original request is accepted
or rejected. Finally, we divide the overprofit after a rejection by the overprofit after an acceptance.

A numerical illustration is as follows: consider a request, which could be served by a vehicle in
the same zone with an initial profit of 10 USD, but the operator rejects this request. From the same
zone, three further requests appear within the ten subsequent time steps. Using a vehicle within the
same zone, they could be served with a profit of 5 USD, 12 USD, and 14 USD, respectively. These
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numbers are the theoretical profits. The associated overprofits are 0 USD, 2 USD, and 4 USD.
Therefore, the total overprofit compared to the original request is 6 USD. Now, consider a second
request, which is accepted by the operator, with an initial profit of 10 USD and subsequent theo-
retical profits of 8 USD, 11 USD, and 12 USD. The overperformance for this request is 3 USD.
If these are the only two profitable requests available, the overperformance ratio is 6 divided by 3,
which equals 2. As the overperformance ratio is larger than one, the subsequent requests after the
rejection are more profitable than those after the acceptance. Accordingly, whenever the overper-
formance ratio is larger than one, we can conclude that the analyzed algorithm is better at taking

anticipative decisions than a greedy algorithm.

C. Complementary Results

C.1. Complementary Results with Local Rewards
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Figure 9: Validation reward along the training process for two exemplary instances. The green line is the mean
over random seeds, the shaded area depicts the minimum and maximum values over random seeds.
Plots in the right column are zoomed in versions of the plots in the left column to make the part of the
training process after a reward of zero is reached better visible.

Here, we provide additional result plots. Figure 9 shows the validation reward to illustrate the
training process for two exemplary instances: 11 small zones with 24 vehicles and 38 large zones

with 100 vehicles. Figure 10 shows the test performance of a policy trained with some original
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Figure 10: Average performance of our method vs. greedy over the 20 test dates for the 38 large zones instance.
We train the RL agents with 50, 100, 150, and 250 vehicles on the original system. The left plot shows
the test performance on the original system. The right plot shows the test performance of the same
policies, without additional training, for an increased system size, with twice as many vehicles and
requests (downscaled by factor 10 instead of 20), i.e., we use the policy trained with 50 vehicles for
the 100 vehicles on the larger system, and likewise for the other vehicle numbers.

number of agents in a system with an increased number of agents. The performance does not

deteriorate, illustrating that our method is non-parametric w.r.t. the number of agents.

C.2. Complementary Results with Global Rewards

We show the validation rewards of GRA, COMA*", COMA', COMA"Y, LGRA, LRA, and
COMA** for the instance with 11 zones and 18 vehicles and the instance with 11 zones and 24 ve-
hicles over the course of training in Figure 11. We observe three patterns in the validation rewards:
firstly, in both instances, the purely global-rewards-based algorithms GRA, COMA®Y", COMA'',
and COMA® need about ten times as many training steps to converge as LRA, while LGRA and
COMA®** need about the same to double the number of steps until convergence. Secondly, most
purely global-rewards-based algorithms display far larger differences between their best and worst
validation performance in both instances, indicating unstable convergence behavior. Finally, the
convergence speed decreases for the purely global-rewards-based algorithms except COMA®Y in
the instance with 24 vehicles compared to the one with 18 vehicles. For COMA®Y, the maxi-
mum and minimum performance diverges more in the larger instance. The algorithm LGRA also
faces challenges when increasing the number of agents: to remain stable and converge quickly, we
have to decrease the share of global rewards from 60% to 30%, thereby also lowering the positive
influence of global rewards. In contrast, LRA and COMA®* have about the same stability and
convergence speed in both instances.

This final observation provides evidence for the lower performance of purely global-rewards-
based algorithms in the instance with 24 vehicles. As the learning is less stable, the learned policies
are less reliable. With even validation performance curves of converging models being less stable,
trained models are more likely to converge to a sub-optimal policy. While we allow all algorithms
enough steps to converge, the slower learning of purely global-rewards-based algorithms can be
an additional problem in practice. Overall, these results confirm our conclusion that learning
using purely global rewards increases vehicle dispatching performance, but leads to problems when

increasing the number of agents.
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Figure 11: Validation rewards of algorithms over training steps. The black horizontal line indicates zero. The
main line denotes the average validation reward over the three random seeds, the shaded area the
maximum and minimum rewards at each step.
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Abstract

We study the robustness of deep reinforcement learning algorithms against distribution shifts within con-
textual multi-stage stochastic combinatorial optimization problems from the operations research domain.
In this context, risk-sensitive algorithms promise to learn robust policies. While this field is of general in-
terest to the reinforcement learning community, most studies up-to-date focus on theoretical results rather
than real-world performance. With this work, we aim to bridge this gap by formally deriving a novel
risk-sensitive deep reinforcement learning algorithm while providing numerical evidence for its efficacy.
Specifically, we introduce discrete Soft Actor-Critic for the entropic risk measure by deriving a version
of the Bellman equation for the respective ()-values. We establish a corresponding policy improvement
result and infer a practical algorithm. We introduce an environment that represents typical contextual
multi-stage stochastic combinatorial optimization problems and perform numerical experiments to em-
pirically validate our algorithm’s robustness against realistic distribution shifts, without compromising
performance on the training distribution. We show that our algorithm is superior to risk-neutral Soft
Actor-Critic as well as to two benchmark approaches for robust deep reinforcement learning. Thereby,
we provide the first structured analysis on the robustness of reinforcement learning under distribution
shifts in the realm of contextual multi-stage stochastic combinatorial optimization problems.


https://arxiv.org/abs/2402.09992
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1. Introduction

Model-free deep reinforcement learning (DRL) has recently been used increasingly to solve con-
textual multi-stage stochastic combinatorial optimization (CO) problems from the operations re-
search domain. Such problems arise, among others, in inventory control (Vanvuchelen et al. 2020,
Gijsbrechts et al. 2022, De Moor et al. 2022) or control of mobility on demand systems (Tang
et al. 2019, Gammelli et al. 2021, Sadeghi Eshkevari et al. 2022, Enders et al. 2023), where an
agent must solve a CO problem at each time step to decide its policy. In this context, DRL benefits
from using neural networks (NNs), which are well suited to represent and learn complex policies
in such contextual environments. However, a policy trained by DRL to solve a respective Markov
decision process (MDP) is sensitive to changes of environment parameters (Iyengar 2005). Yet,
the resulting question of how to improve DRL’s robustness against such disturbances has received
limited attention in the literature on DRL for multi-stage stochastic CO so far. With this work, we
take a first step to close this research gap.

While works on robust reinforcement learning (RL) exist, they are often tailored to robotics ap-
plications and typically focus on topics such as safety during exploration, robustness against action
perturbations, or robustness against adversarial attacks. In contrast, robustness against distribution
shifts is particularly relevant for contextual multi-stage stochastic CO problems. Such distribution
shifts can occur because of unforeseeable changes in the environment, e.g., altered transportation
patterns after the surge of Covid or disruptions of supply chains triggered by geopolitical events.
Besides, imperfect simulators can lead to distribution shifts when training in simulation before de-
ployment in the real world. Additionally, continuous action spaces are prevalent in robotics, while
we often encounter discrete action spaces in CO problems. Furthermore, existing works on robust
RL often focus on finding the optimal policy for a worst-case scenario. Instead, in a CO context,
one focuses on the tradeoff between learning a policy that consistently achieves high expected re-
turns on the training distribution and a policy that is robust against distribution shifts at the price
of lower yet good performance across distributions. In the following, we develop a methodology

that provides a principled approach to explicitly control this consistency-robustness tradeoff.

1.1. Related work

Multiple approaches to improve the robustness of RL exist, see the extensive review in Moos et al.
(2022). However, most of them have limited applicability in practice, since they are not scalable
with NNs as function approximators or require lots of additional machinery, e.g., solving a bi-
level optimization problem or introducing adversaries. Alternative approaches are model-based
or do not give control over the consistency-robustness tradeoff. In contrast, we focus on efficient
and tractable approaches that can build on state-of-the-art model-free DRL algorithms to achieve
robustness under realistic distribution shifts. Some approaches can fulfill these requirements: ma-
nipulation of training data, entropy regularization, and risk-sensitive RL. We use the former two

approaches as benchmarks and focus our study on risk-sensitive RL. Thus, we defer the discus-
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sion of further details on the benchmarks to the experiments and results sections and focus the

remaining discussion on risk-sensitive RL.

In risk-sensitive RL, one usually optimizes a risk measure, e.g., mean-variance or conditional
value at risk (CVaR), of the return instead of the expected return. Theoretical connections exist
between risk-sensitive and robust RL when optimizing the CVaR (Chow et al. 2015) as well as for
coherent risk measures and risk-sensitivity under expected exponential utility functions (Osogami
2012). Other works report promising empirical results for risk-sensitive RL algorithms, see, e.g.,
Zhang et al. (2021), Noorani et al. (2022). Moreover, a risk-sensitive RL approach can lead to al-
gorithms similar to risk-neutral RL, thus requiring little extra implementation effort. Depending on
the risk measure, risk-sensitive RL algorithms can have a hyperparameter controlling the tradeoff

between expected return and risk-sensitivity.

Some works consider a constrained optimization problem, where the expected return is maxi-
mized while constraining a risk measure of the returns to set a threshold for unwanted outcomes,
see, e.g., Prashanth and Ghavamzadeh (2013), Prashanth (2014), Prashanth and Ghavamzadeh
(2016), Yang et al. (2021). This approach has a strong focus on safety and/or worst-case out-
comes and thus fits our purposes less than directly optimizing a risk-sensitive objective function.
An approach to optimize risk-sensitive objective functions is distributional RL, see, e.g., Ma et al.
(2020), Singh et al. (2020), Urpi et al. (2021). It has the advantage that the learned distributional
information can be used to consider any risk measure, i.e., the proposed algorithms are agnostic to

the choice of risk measure. However, this comes at the cost of additional algorithmic complexity.

Thus, we focus on approaches that directly optimize a risk-sensitive objective. To do so, Howard
and Matheson (1972), Jacquette (1976), Patek (2001) use dynamic programming, assuming knowl-
edge of the underlying MDP. The authors of Tamar et al. (2012), Chow and Ghavamzadeh (2014),
Chow et al. (2015) propose policy gradient and/or actor-critic and/or approximate value iteration
algorithms for objective functions based on variance or CVaR. In Tamar et al. (2015), a policy gra-
dient and actor-critic algorithm is derived for the whole class of coherent risk measures (Artzner
et al. 1999). All of these works date back to the year 2015 or earlier and develop basic RL al-
gorithms, rather than building on today’s state-of-the-art. In particular, they do not include NNs
as function approximators to deal with large state spaces. The reported experiments focus on ro-
bustness under action perturbations or risk-sensitivity in finance applications without a relation to

robustness or a CO context.

Recently, exponential criteria and the entropic risk measure have been increasingly used as
a risk-sensitive objective, with Fei et al. (2020, 2021a,b) focusing on theoretical regret analysis
rather than practical state-of-the-art algorithms or experimental results. The authors of Nass et al.
(2019) derive a policy gradient algorithm for the entropic risk measure and apply it in a robotics
context. In Noorani and Baras (2021), a risk-sensitive variant of the REINFORCE algorithm for
exponential criteria is introduced and tested on the Cart Pole and Acrobot environments. The
risk-sensitive algorithm outperforms its risk-neutral counterpart, even though the environment at

test time is the same as during training (no disturbance). This work is extended to an actor-critic
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algorithm, which outperforms its risk-neutral counterpart on Cart Pole and Acrobot environments
when they are disturbed by varying the pole lengths during testing (Noorani et al. 2022). Although
these works use NNs for function approximation, they are still the risk-sensitive counterparts to
basic instead of state-of-the-art risk-neutral RL algorithms. This is not the case for Zhang et al.
(2021), which develops a risk-sensitive version of TD3 for a mean-variance objective and evaluates
its performance on MuJoCo environments with disturbed actions. However, this algorithm is not

compatible with a discrete action space, which is the focus of our study in a CO context.

Concluding, to the best of our knowledge, no model-free risk-sensitive DRL algorithm for dis-
crete actions that is based on the state-of-the-art in risk-neutral DRL exists. Moreover, none of the
existing works investigates robustness against distribution shifts, and most works on risk-sensitive
RL compare the performance of risk-sensitive RL algorithms only to their risk-neutral counter-
parts. Finally, there exists no published work with a structured analysis of the robustness of RL in

CO problems.

1.2. Contributions

We aim to close the research gap outlined above by introducing a novel risk-sensitive DRL al-
gorithm: discrete Soft Actor-Critic (SAC) for the entropic risk measure, which effectively learns
policies that exhibit robustness against distribution shifts. Specifically, we derive a version of the
Bellman equation for ()-values for the entropic risk measure. We establish a corresponding policy
improvement result and infer a practical model-free, off-policy algorithm that learns from single
trajectories. From an implementation perspective, our algorithm requires only a small modifica-
tion relative to risk-neutral SAC and is therefore easily applicable in practice. Furthermore, our
algorithm allows to control the consistency-robustness tradeoff through a hyperparameter. For em-
pirical evaluation, we propose a grid world environment that abstracts multiple relevant contextual

multi-stage stochastic CO problems.

We show that our algorithm improves robustness against distribution shifts without performance
loss on the training distribution compared to risk-neutral SAC. Moreover, we evaluate our al-
gorithm in comparison to two other practically viable approaches to achieve robustness: ma-
nipulating the training data and entropy regularization. The performance analysis of these ap-
proaches within our environment under distribution shifts is of independent interest. While ma-
nipulating the training data leads to good empirical results, it is less generally applicable than
our risk-sensitive algorithm and entropy regularization. Entropy regularization achieves better
robustness but worse performance on the training distribution compared to our risk-sensitive al-
gorithm. To facilitate a direct comparison of the two approaches, we study the weighted average
of the performance on the training distribution and the performance under distribution shifts: our
risk-sensitive algorithm outperforms entropy regularization if we assign at least 37% weight to
the performance on the training distribution. Overall, we provide the first structured analysis of

the robustness of RL under distribution shifts in a CO context. To foster future research and
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ensure reproducibility, our code is publicly available at https://github.com/tumBAIS/
RiskSensitiveSACforRobustDRLunderDistShifts.

2. Risk-sensitive Soft Actor-Critic for discrete actions

We base our novel risk-sensitive DRL algorithm on the variant of SAC (Haarnoja et al. 2018c) for
discrete actions (Christodoulou 2019). We chose SAC for three reasons: firstly, it is a state-of-the-
art algorithm with very good performance across a wide range of environments (Haarnoja et al.
2018d, Christodoulou 2019, Igbal and Sha 2019, Wong et al. 2021, Sun et al. 2022, Enders et al.
2023, Yang et al. 2023, Hu et al. 2023); secondly, it is an off-policy algorithm and consequently
more sample-efficient than on-policy algorithms; thirdly, it already incorporates entropy regular-
ization. The last reason makes SAC particularly well suited for our robustness analysis: entropy
regularization can increase robustness, as shown theoretically in Eysenbach and Levine (2022)
and empirically in Haarnoja et al. (2018a,b), Eysenbach and Levine (2022). Consequently, we can
benchmark the robustness of our risk-sensitive algorithm with turned off entropy regularization

against the robustness of risk-neutral SAC with different intensities of entropy regularization.

In the remainder, we use the following basic notation: ¢ denotes a time step, s a state, a an
action, r a reward, d a done signal, v the discount factor, and s’ the next state if there is no time
index when considering a single transition. We denote a (stochastic) policy by 7 and its entropy
given state s by H (7 (+|s)). Moreover, « > 0 is the entropy coefficient hyperparameter, II denotes
the space of tractable policies and Q™ the ()-values under policy 7. The notation (s;41,...) ~ pr
refers to sampling a state-action trajectory, i.e., Sg41 ~ P(Ser1|St, @), are1 ~ m(are1]Si41), Stao ~
p(StvalSte1, @i11), -y ST ~ p(S7|ST_1,07_1), Where p denotes the state transition probability
distribution and 7" € N U {oo} the terminal time step. Furthermore, Dy (pl||q) is the Kullback-
Leibler divergence (KL-divergence) of probability distribution ¢ from probability distribution p,
while D is the replay buffer. When considering a parameterized policy 7, or parameterized ()-
values (y, we denote the actor network parameters by ¢ and critic network parameters by 6, as
well as target critic network parameters by 6. When we write 7(s) instead of 7(a|s) or Q(s) instead
of Q(s, a), we refer to the vector of all action probabilities or the vector of ()-values for all actions,

respectively, given state s (as opposed to the single entry of this vector for the specific action a).

2.1. Risk-neutral Soft Actor-Critic

We provide a short summary of the risk-neutral SAC algorithm for discrete actions, before deriving
our risk-sensitive version. SAC is an off-policy RL algorithm which concurrently trains an actor
network that parameterizes a stochastic policy, i.e., a probability distribution over all possible
actions, and a critic network that outputs the ()-values for all possible actions, given an input state.

It regularizes rewards with an additional entropy term to explicitly incentivize exploration, such
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that the optimization objective reads

o0
HlTEriXE,T [Z A (r (s, a) + aH (7 (|st)))] .
t=0
The entropy coefficient o controls the trade-off between rewards and the entropy. It can be set as a

hyperparameter or learned such that the resulting policy has a certain target entropy chosen based
on some heuristic. In the remainder, we use the former option.

In the discrete actions setting, the loss functions for the actor and the critic read

Te(9) = Eoup [m5(5)" - (log me(s) — Qu(s))], (1)
Jo(0) = Esards)~D B <Q9(8, a) — Q)Q] ,

Q=1+ (1—dy 71" - (Qy(s) — alogmy(s')).

In practice, we train two (target) critic networks and use the minimum of the two (-values in the
policy loss and Q calculation, to mitigate the overestimation bias. We use this minimum of two
critics for our risk-sensitive algorithm analogously but do not explicitly write the minimum of two
(Q-values for conciseness.

In the following, we firstly introduce our risk-sensitive objective function. Secondly, we derive
a Bellman equation for the ()-values under this objective. Thirdly, we show how to achieve policy
improvement. Finally, we derive a practical algorithm with function approximation based on these

theoretical results.

2.2. Risk-sensitive objective

Instead of the risk-neutral objective function, i.e., the expected value of the sum of discounted
rewards, we use the entropic risk measure (Howard and Matheson 1972, Jacquette 1976, Jacobson
1973, Whittle 1981) as our risk-sensitive objective:

1 @
a5 log I, [eﬁztzo vt<r<5t,at)+aﬂ<w(~\5t>>)] _ )

Here, we adjust the standard entropic risk measure by introducing entropy regularization of rewards
to obtain a risk-sensitive variant of SAC. Analogously to risk-neutral SAC, entropy regularization
allows us to explicitly control the exploration-exploitation tradeoff in our risk-sensitive algorithm

via the entropy coefficient. The hyperparameter 3 € R controls the risk-sensitivity of the objective:

%log]E [eﬁR] = ]E[R] + gVar[R] + O (52) , (3)

where we set R = >.7 7" - 7 (s, a;). Since the variance measures uncertainty, we obtain a risk-
averse objective function for 5 < 0, for § > 0 it is risk-seeking, and 5 — 0 recovers the common
risk-neutral objective.

In principle, we could use any risk measure. However, the entropic risk measure is a natural
choice, particularly for operations research applications, as it is the certainty-equivalent expec-
tation of the exponential utility function, see Howard and Matheson (1972), Jacquette (1976).

Risk-sensitive MDPs with the expected exponential utility function as optimization objective are
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closely connected to robust MDPs (Osogami 2012). Also, the entropic risk measure is a convex
risk measure, thus fulfilling multiple desirable properties from a mathematical risk management
perspective, even though it is not coherent (Artzner et al. 1999). Furthermore, alternative measures
such as CVaR are computed solely based on the tail of the return distribution, using only a small
portion of the data. Contrarily, the entropic risk measure bases on all data, which is important in
an RL context, where sample efficiency is a major concern. Besides, CVaR does not give explicit
control over the tradeoff between expected return and risk, as opposed to the entropic risk mea-
sure: Equation (3) reveals that the entropic risk measure allows to explicitly control this tradeoff
by setting /3 accordingly.

Moreover, we will show below that the entropic risk measure is well suited to derive a practical
RL algorithm without adding a lot of machinery. The resulting algorithm can still leverage a lot of
valuable techniques developed for risk-neutral RL, like off-policy learning with experience replay

and entropy regularization for effective exploration.

Since we theoretically expect risk-averse rather than risk-seeking behavior to improve robust-
ness, we use negative values for 3 in the empirical evaluation. Nevertheless, the theoretical results
which we derive in the following as well as the practical algorithm also apply to the risk-seeking

case with 5 > 0.

In the following, we use two approximations (see Appendix A.1 for details): (i) for 3 close to

zero and a real-valued random variable X, we get [eﬁX ] ~ ePPIX]: (ii) for 7 close to one, it
holds that E [ X7] ~ (E[X])”.

2.3. Bellman equation

To facilitate value iteration, we derive a Bellman equation for the ()-values under our risk-sensitive
objective. We want to use the Bellman equation as the basis for a model-free RL algorithm that
can learn from single trajectories. Thus, the Bellman equation should take the form Q™(s;, a;) =
E(s;11,a0:1)~px |-]» Which allows to obtain an unbiased sampling-based estimate of the right-hand
side (RHS). With the logarithm in Equation (2), we cannot obtain a Bellman equation of that form.
Thus, we define

%log@“(st,aa @

and derive a Bellman equation for (). While we use the same rationale as Noorani et al. (2022)

@Yst,at) = eﬁ.QT(st’at) < QW(St,at) =

here, we cannot use this work’s result, as it considers V'-values and does not incorporate entropy
regularization. In the following, we use the notation Q; := Q"(s;, a;), r; := 7 (s, ), and HJ :=

H (7 (-|s¢)) to save space.

Proposition 1 (Bellman equation). For the risk-sensitive objective in Equation (2), y close to one,
and with Q as defined in Equation (4), it holds that

@: = E(St+1,at+1)wﬂw [eXp (67} + 6’70‘%?—#1 + 71Og@:+1)] ’ ©)
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Proof. With the definition of ()-values, we obtain

0
@: = eﬁ” 'E(St+1,-~)~p7r [exp (ﬁ . Z'yl (Tt+l + aHgﬂ))]

=1

@ Bﬁn . IE(St-H,at-H)NpTr [exp (57 (rt+1 T aH?'H))

-I[‘_?J(StJrQN,.)NpTr [eXp (ﬁ . Z fyl (Tt+l + (XH;_O) ]]

=2

® Br ™
— 65 t, E(St+1,at+l)~p7r [exp (570‘7{“—1)

y
. <€6Tt+1 : E(St+2,...)~ﬂw [eXp (6 ’ Z ’7171 (Tt+l + aH?”‘l)) ]) ]
=2

© Bre Essr1,a001)~pn [exp (ﬁfya?—[fﬂ) - (@Ll)w]

= E(ss1,a001)~pr [GXP (57} + pyaHi, + 710g©:+1>] :
Equality (a) is based on the observation that the first term in the sum does not depend on the
transitions after ¢+ 1. Equality (b) follows from Approximation (ii). Equality (c) uses the definition
of (Q-values for time step ¢ + 1. 0

2.4. Policy improvement

Given the (-values obtained under an old policy 7,4, We obtain a new policy as
oo Qol(st,)
exactly as in the original SAC paper (Haarnoja et al. 2018c). Here, the partition function Z™4 (s;)

Tnew = arg min Dy <7r’ (+|s¢) ) = argmin J,, (7' (-|s:)), (6)
m'ell w'ell

normalizes the distribution. We show that despite our changed objective function and thus different

Bellman equation, this definition of a new policy still implies policy improvement.

Proposition 2 (Policy improvement). For an old policy 7, and the new policy m,., as defined in
Equation (6), it holds that Q™ (s, a;) = Q™ (sy, ay) for any state sy and action a;, assuming that

7 is close to one and [ is close to zero.

Proof. We sketch the proof here and provide details in Appendix A.2.
We can always cho0se ey = Told, Such that Ji , (Tpew (+|5¢)) < Jry (Toia (+]S¢)), which yields

E

i~ [Q1 " — @108 Tnew (1]5¢)] = Eaymryy [QF — alog Toia (a¢]st)] -

For 3 < 0, this is equivalent to

iy —TT, Told —TT,
eﬁa’]—[t new ) EatNﬂ_HEW I:Qt (7ld] g eﬁaHt ol ) EatNﬂ_()ld I:Qt (7ld] .

Repeated application of the Bellman equation derived before and this inequality gives @:"m >

Q;™", such that we obtain Q7 < Q™. The proof for 5 > 0 works analogously. O
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2.5. Practical algorithm

We can use the Bellman equation and the policy improvement result in a straightforward manner
to obtain a practical risk-sensitive off-policy DRL algorithm. It is similar to risk-neutral SAC, with

the following adjustments:

We can learn () with the corresponding critic loss function

1 /— AN\ 2
1a®) = Btnnaren |5 (@l - Q).

Q = exp (Br — By - my(s") logme(s')) - me(s) " (Qg (s’))7 ,
where the target (Q is an unbiased, sampling-based estimate of Equation (5). We computed the
entropy and the expectation over next actions directly, which is possible because of the discrete
action space, such that we only sample the next state to estimate Equation (5). If the done signal d
is TRUE, we set the terms after e®” to one. To ensure that @ > (), we use a softplus instead of a

linear activation on the output layer of the critic networks.

Based on Equation (6), the policy loss function is the same as in risk-neutral SAC, shown in
Equation (1), but we calculate the needed critic values as Qy(s) = %log Q,(s) from the output
Q4 () of the critic network(s).

While the resulting algorithm is simple, its usability is limited since it is numerically unstable
in practice as we empirically show in Appendix B. We hypothesize that the numerical instability
is caused by the fact that we learn Q instead of (). To mitigate this numerical instability, we note

that Equation (5) is equivalent to

or = %log (@:) _ %log <]E(st+1,at+1)~pw [eﬁ(rt+v(aﬂ?+1+Q?+1))]) . (7)

When learning (), the RHS of Equation (7) is the target in the mean squared error loss function.
Due to the discrete action space, we can compute the expectation over next actions directly, given

a next state.

Still, we need a sampling-based estimate of the RHS: since we want to obtain a model-free
algorithm that learns from single trajectories, we cannot compute the expectation over next states
directly. As the expectation appears inside the logarithm, replacing the expectation by a mean over
samples does not give an unbiased estimate of the RHS. We do so nevertheless and observe that
this leads to a well-performing algorithm in practice. We have only one next state s’ corresponding
to each state s that we sample from the replay buffer to compute the loss. Consequently, we remove
the expectation over next states in Equation (7) and replace s;,1 by the next state s’ from the replay

buffer. Then, the critic loss function becomes

Jo(6) = Baracron |5 (s ) - Q)

Q= %1og (mo(s)" - exp (B (r + 7 (Q5 (5) — - my(s")  log my(5)) ))) -
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The computation of this target Q has a log-sum-exp structure, which is known to be numerically

unstable when implemented naively. Thus, we rewrite it as follows (see Appendix C for details):

Q =1 —ya-my(s) logme(s') + max Qg(s',a")

i %10g §w¢(a’]s’) - exp <ﬁ’y (Q@(sla a’) — max Qg(s", a/>>>

With this new critic loss function, we can learn () directly, without the need to learn @ The
resulting algorithm is identical to risk-neutral SAC for discrete actions, except for the adapted

critic loss, which gives the intended risk-sensitivity. We provide a pseudocode in Appendix D.

3. Experiments

We test the proposed risk-sensitive SAC algorithm for discrete actions on an environment that
abstracts several multi-stage stochastic CO problems. In the following, we introduce the envi-
ronment, discuss our benchmark algorithms, and explain how we evaluate the algorithms’ perfor-
mance and robustness. For details on our state encoding, NN architectures, and hyperparameters,

see Appendix E.

3.1. Environment

We consider a discrete time horizon comprising 200 time steps per episode. Our environment is
a 2D grid containing 5x5 cells, in which an agent can move around freely in the four cardinal
directions, i.e., the action space at each time step is {no move, move up, move right, move down,
move left}. If an attempted move causes the agent to exit the grid, it remains in its current cell.
Each move incurs a negative reward (cost) of -1.

Within this grid, items appear stochastically based on a spatial probability distribution at each
time step. We assume that the distribution remains unknown to the agent, which can only observe
the resulting data upon interacting with the environment. The items disappear after a maximum
response time of ten time steps. When the agent reaches a cell containing an item before it dis-
appears, it collects the item and should then transport it to a fixed target location (see Figure 1).
Delivering an item to the target location leads to a positive reward (revenue) of +15. The agent
cannot carry more than one item at a time. This problem setting satisfies the Markov property,
since the probability that an item appears in a specific cell during the current time step does neither
depend on the agent’s past actions nor on which items appeared in prior time steps.

Our environment is an abstraction of various classical CO problems requiring sequential online
decision-making under uncertainty, e.g., various routing and dispatching problems in the context
of warehouses, mobility on demand systems, (crowd-sourced) delivery, or ambulance operations.
While our environment is simple, it is also general and thus well suited to study robustness of
DRL in multi-stage stochastic CO problems. Moreover, our environment is well suited to investi-

gate distribution shifts, which can occur in all aforementioned applications: Figure 2 depicts the
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Figure 1: Illustration of the environment. The gray cell is the target location.
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Figure 2: Per-time-step probability that an item appears in the respective cell, for twelve different item distri-
butions.

item-generating probability distributions considered here. We train on data sampled from the gra-
dient 1 item distribution, while testing evaluates the trained model on data sampled from all twelve
distributions, simulating a wide range of distribution shifts.

One comment on the action space is in order: our agent takes the micro-decision to which
neighboring cell to move next, rather than taking the macro-decision to which cell (even if it is
not a neighboring one) to move next. The latter option might appear more natural, e.g., for the
decision which item to collect. However, we intentionally chose the former option, as it is more

general and any macro-decision can be reconstructed through a series of micro-decisions.

3.2. Benchmarks

We compare our risk-sensitive SAC algorithm against two benchmarks: manipulating the training
data and entropy regularization. Moreover, we compare all three approaches to improve robust-
ness against risk-neutral SAC for discrete actions, which is our non-robust baseline algorithm. We
further hypothesized that L2 regularization of the NNs’ parameters could improve robustness, as
it is frequently used in (supervised) machine learning to use a complex model but reduce overfit-

ting, and learning a policy that is less tailored to the training data might help robustness against
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distribution shifts. However, we did not find evidence for this hypothesis. We omit details on this

important negative result in the main body of the paper, but provide them in Appendix F.

Manipulating the training data. In supervised learning, manipulating the training data has
been used successfully to achieve robustness, see Goodfellow et al. (2015), Tramer et al. (2018),
Sinha et al. (2018). We transfer this approach to RL by inserting noise into the training process.
We expect the policy to learn to perform well under this noise, generalize better, and thus be more
robust against disturbances during testing.

For distribution shifts in our environment, this means to replace a part of the item locations in the
training data by item locations sampled from a different spatial distribution. Since we assume the
distribution shift to be unknown a priori, we use the uniformly random distribution to sample the
manipulated item locations. Specifically, we replace each item in the training data with a certain
probability, for which we test a large range of different values.

For a fair comparison, we train risk-neutral SAC on the manipulated training data and test the
resulting policy on the not-manipulated test data for all distributions in Figure 2. This includes gra-
dient 1, to assess how manipulating the training data changes the trained policy’s test performance

without distribution shifts.

Entropy regularization. The use of entropy regularization can increase the robustness of RL
against disturbances in the environment, as shown theoretically in Eysenbach and Levine (2022)
and empirically in Haarnoja et al. (2018a,b), Eysenbach and Levine (2022). Risk-neutral SAC
already incorporates entropy regularization. Its intensity can be controlled via the entropy coeffi-
cient hyperparameter c.. For our non-robust baseline algorithm, for which we focus on maximizing
performance on the gradient 1 distribution, we found a scheduled « to be effective: we use a tuned
a > 0 at the beginning of training for effective exploration, then set it to zero after a tuned number
of iterations, and continue training with o« = 0 until convergence, obtaining the final policy without
entropy regularization. We use the same schedule for « in our risk-sensitive SAC algorithm. When
we use entropy regularization to improve the robustness of the risk-neutral algorithm, we keep the
tuned a-value at the beginning of training, but then reset it to a positive value for the remainder of
training until convergence. We conduct experiments for a large range of different values for this

final a.

3.3. Performance evaluation

We measure an algorithm’s performance in our environment in terms of its percentage improve-
ment over a greedy baseline algorithm, as greedy algorithms typically perform well in related CO
problems (Enders et al. 2023). Advanced algorithms typically outperform greedy algorithms by
only a few percentage points. Still, the effort to develop such algorithms is meaningful, since they
are typically deployed at a large scale in practice, such that the small percentage improvements

translate into large absolute gains (Sadeghi Eshkevari et al. 2022).
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We implement the following greedy algorithm: if the agent has collected but not yet delivered
an item, it moves to the target location on the shortest route. If the agent has no item on board, but
there is an item available that can be reached before it disappears and will lead to a positive profit
(accounting for revenue and cost for moving to the item and then to the target location), the agent
moves towards the item’s location on the shortest route. If there are multiple such items available,
the agent moves towards the item that will lead to the highest profit. If there is no such item
available, the agent does not move, i.e., it stays at the target location. When the agent has started
to move towards an item and then a more profitable item appears, the agent changes direction and
moves towards the more profitable item.

This greedy algorithm is not tailored to a specific item distribution, i.e., it is robust against
distribution shifts. Thus, when we report performance improvement over the greedy algorithm,
we report performance improvement over a robust baseline, which makes the greedy algorithm
particularly well suited for our purposes.

When we report the performance of a DRL algorithm under a distribution shift, i.e., the per-
formance on test data from a distribution different than the training distribution, we report its
performance gain over greedy relative to the performance gain of the policy obtained by training a
risk-neutral SAC agent on data from the respective shifted distribution. Thereby, we view the per-
formance of a DRL agent trained on the “true” distribution as an upper bound on the performance
of a robust or non-robust DRL agent trained on the “wrong” distribution.

We use 1,000 episodes of sampled data for each of the item distributions, which we split into
800 training, 100 validation, and 100 testing episodes. The test performance is the non-discounted
cumulative reward per episode, averaged over the 100 testing episodes. We repeat every training
run with three different random seeds and select the model with the highest validation reward
across seeds for testing.

To reduce the impact of the random sampling process on the reported results for our benchmark
based on manipulated training data, we repeat the training data manipulation process three times
with three different random seeds. Then, we repeat every experiment for each of the three manip-
ulated data sets. Finally, we report the test performance averaged over the three policies trained on
the three different data sets.

4. Results and discussion

In the following, we briefly discuss the convergence behavior of our risk-sensitive algorithm. Then,

we analyze the performance of our algorithm and the two benchmarks in detail.

4.1. Convergence analysis

Figure 3 shows the validation reward over the course of training for our risk-sensitive algorithm
with § = —1 in comparison to risk-neutral SAC. The training curves illustrate that for small

absolute (3-values, our risk-sensitive algorithm shows stable convergence behavior. For larger
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Figure 3: Convergence behavior of our risk-sensitive algorithm with 5 = —1 compared to risk-neutral SAC. For

each algorithm, we show the training curves for three different random seeds. The non-transparent
lines correspond to the best-performing seed, the transparent ones to the other seeds.

absolute values of (3, our algorithm still exhibits stable convergence to a good policy for specific
random seeds, but not across all tested random seeds. Moreover, for all tested values of 3, our
risk-sensitive algorithm requires a similar number of samples and a similar computational time as
risk-neutral SAC.

4.2. Performance analysis

Figure 4 shows the performance of the three approaches to improve robustness, both on the test data
for the training distribution and under distribution shifts. As theoretically expected, the non-robust
SAC algorithm performs worse under distribution shifts than when it is trained on data from the
true distribution. Specifically, the performance gain over greedy under distribution shifts is only
20% of the achievable performance gain. This illustrates that our environment and the consid-
ered item distributions are suitable to experimentally investigate the robustness of DRL algorithms
under distribution shifts.

Our risk-sensitive algorithm improves the performance under distribution shifts compared to
risk-neutral SAC, as it reaches up to 53% of the upper bound’s performance improvement over
greedy. Up to = —2, an increasing absolute value of 3 and therefore increasing risk-aversion
improves the performance under distribution shifts. As the absolute value of S becomes even
larger, the risk-sensitive algorithm still outperforms the risk-neutral algorithm under distribution
shifts, but performance decreases again and the performance pattern becomes slightly unstable.
This instability is in line with the previously described worsening convergence behavior as the
absolute value of J increases. These empirical observations align with our theoretical results in
Section 2, which assume that [ is close to zero. Finally, as the absolute value of S becomes too
large, performance collapses, as the agent becomes too risk-averse and the learning process too
unstable to learn a good policy.

Except for too large absolute [3-values, the risk-averse policy consistently outperforms the risk-

neutral policy on the training distribution, improving the risk-neutral policy’s performance gain
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Performance gain over greedy: robust algorithms under distribution shifts vs. non-robust SAC trained on shifted distributions
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Figure 4: Performance of the three approaches to improve robustness. The top row shows their performance
on the test data for the training distribution. The bottom row shows the average over all other distri-
butions, i.e., the performance under distribution shifts. The left-most data point in each plot shows
the results for the non-robust discrete SAC algorithm. We report all results relative to SAC’s perfor-
mance when trained on the shifted, i.e., the true distribution as explained in Section 3.3.

over greedy up to 114 percentage points. This result might be surprising at first sight, as one might
expect a consistency-robustness tradeoff. However, it is in line with experimental results in the lit-
erature (Ma et al. 2020, Noorani and Baras 2021), where risk-averse DRL algorithms outperform
their risk-neutral counterparts on the training environments. The authors of Noorani and Baras
(2021) explain this observation by a variance reduction due to the risk-averse objective, which
in turn helps to converge to a better policy for the training environment. Based on Equation (3),
our risk-sensitive objective can be interpreted as the variance-regularized expected return, penal-
izing high variance for negative 3-values. This explains our risk-averse algorithm’s performance

improvement on the gradient 1 distribution.

The manipulation of the training data also improves the performance under distribution shifts,
to about 60-80% of the upper bound’s performance improvement over greedy when we sample
at least 40% of item locations from the uniform distribution. Simultaneously, the performance
on the gradient 1 distribution increases for small proportions of introduced noise, but decreases
as this proportion becomes larger. Consequently, manipulating the training data leads to better
robustness results than our risk-sensitive algorithm. Which approach is favorable depends on how
one weighs consistency versus robustness, as our risk-sensitive algorithm achieves better results
on the training distribution. Besides, the manipulation of the training data requires the ability to
change the training environment deliberately, typically in a simulator, and the domain expertise
how to manipulate the training data effectively for the respective problem setting. We can use our
risk-sensitive algorithm as well as entropy regularization even when these requirements are not

fulfilled, such that these are more generally applicable.
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Figure 5: Consistency-robustness tradeoff for entropy regularization with o = 0.05 and our risk-sensitive algo-
rithm with 3 = —2. Using the performance under distribution shifts vs. non-robust SAC trained on
the shifted distributions as the performance metric, we show the weighted average of the performance
on the training distribution and the performance under distribution shifts.

With entropy regularization, the performance under distribution shifts improves to 60% of the
upper bound’s performance improvement over greedy as the entropy regularization coefficient «
increases. For further increasing «, the performance under distribution shifts decreases again be-
cause the over-regularization hurts performance. On the training distribution, the performance
decreases as « increases. Consequently, entropy regularization leads to slightly better robustness
than our risk-sensitive algorithm, at the price of lower performance on the training distribution.
Note that we also combined our risk-sensitive algorithm with entropy regularization, but found
that this does not further improve performance, see Appendix G.

Figure 5 compares the consistency-robustness tradeoff for our risk-sensitive algorithm and en-
tropy regularization. Here, we consider the weighted average of the performance on gradient 1 and
the performance under distribution shifts to evaluate these two approaches to improve the robust-
ness of DRL based on a single metric. When we assign at least 37% weight to the performance
on the training distribution, our risk-sensitive algorithm outperforms entropy regularization. Thus,
assuming that good performance on the training distribution is not only a secondary objective with
less than 37% weight, our algorithm is superior to entropy regularization in our experiments. Nev-
ertheless, the final decision which approach is best suited to ensure robustness depends on the

needs of the considered problem setting.

5. Conclusion

We present discrete SAC for the entropic risk measure, which is the first model-free risk-sensitive
DRL algorithm for discrete actions that builds on the state-of-the-art in risk-neutral DRL. Specifi-
cally, we derive a version of the Bellman equation for ()-values for the entropic risk measure. We

establish a corresponding policy improvement result and infer a practical off-policy algorithm that
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learns from single trajectories. Our algorithm allows to control its risk-sensitivity via a hyperpa-
rameter, and implementing our algorithm requires only a small modification relative to risk-neutral
SAC, such that it is easily applicable in practice. We conduct experiments within an environment
representing typical contextual multi-stage stochastic CO problems from the operations research
domain. Thereby, we demonstrate that our risk-sensitive algorithm significantly improves robust-
ness against distribution shifts compared to risk-neutral SAC. Simultaneously, it improves the per-
formance on the training distribution. We compare our risk-sensitive algorithm to (1) manipulation
of the training data and (ii) entropy regularization, showing that our algorithm is superior to these
benchmarks due to its more general applicability and a better consistency-robustness tradeoff. Our
study is the first structured analysis of the robustness of RL under distribution shifts in the realm
of contextual multi-stage stochastic CO problems. Moreover, we note that the presented algorithm
is relevant beyond this application domain and may be used for any MDP with discrete actions
where risk-sensitivity or robustness against environment perturbations is relevant.

In future work, we will extend this research in the following directions: we will investigate
the performance of our algorithm in a more complex, large-scale version of our environment with
multiple agents. Furthermore, we will develop a version of our risk-sensitive SAC algorithm for
continuous actions. Finally, we will implement and test a risk-sensitive Deep Q-Network (DQN)

algorithm for the entropic risk measure based on the derived Bellman equation.
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A. Details on derivations in Section 2

A.1. Approximations
Approximation (i): for 5 close to zero and a real-valued random variable X, we get
ﬁ2
E [e"*] = exp (BE [X]+ ?Var [X]+ O (53)) ~ PEXT
Approximation (ii): for a function f, it holds that

E[f(X)] ~ f(E[X]) + %f” (E[X]) - Var[X].

With f(z) = 27, f'(z) = y277, f"(z) = v(y — 1)2772, we get

E[X7] ~ (BIX])" + 3(7 — 1) (BLX]) " Var[X] ~ (E[X])

for v close to one.
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A.2. Policy improvement proof

The proof of Proposition 2 follows the same arguments as the policy improvement proof in Haarnoja

et al. (2018c). Since we can always choose Tpew = Toiq, 1t holds that

Troa (Toew (15¢)) < Ty (Tota (+]5¢)) -

Consequently,

1
Eomren [log Tnew (@¢]S¢) — - Tl | Jog 7™ (St)]

N

1 iy Uy
]E’atNTCQM |:10g Tlold (at|8t> - aQt o + 1OgZ o (St)] .

Since Z™4 depends only on the state, not the action, this yields

By ey [QE™ — 10 Toew (@4]51)] = Egyarmyy [QF — alog mowa (asy)] -

We assume [ < 0 in the following and note later that the case 5 > 0 works similarly. For 5 < 0,

we get
8 Bugr [Q — 2108 T (00}50)] < 8 Eupeny [0 — tlog g (]
= B (@HP™ + Eugr [QF]) < B+ (M7 + B, [07])
— exp (M + B By [QF]) < oxp (S0H™ + 8- Euy [Q7)
= e L R
- S By [QF] € P B [0

where we used Approximation (i). Repeated application of the Bellman equation derived before

and this inequality yields

Told

v
Q. = Bre Qﬂ'o]d] BaH o
t =e ESt+1~P Eat+1"7rold t+1 € b

Tnew

. Y
Bre Told BaH
= et ]Esz+1~p IEat+1~7rnew [QH-l] e
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— P .]E(StJrl,-n)’”Pvrnew [exp <ﬁ . ’yl (rHl + « ffﬁ)]
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Thus, we obtain . .
;rold _ E 10g @:Old < B log @Z"new _ Z;-ncw,
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which proves the policy improvement for § < 0. The proof for 5 > 0 works analogously (twice,

the < or >-sign does not turn).

B. Results when learning Q

Figure 6 depicts the convergence behavior of the risk-sensitive algorithm that is based on learning
@ as opposed to (). For negative values of 3, the plot looks similar to the one for 3 = 0.01, i.e.,
the algorithm converges to zero rewards (we do not include the results for < 0 since they overlap
too much with the results for 5 = 0.01). While the training curve is reasonable for 5 = 0.1, we

only obtain a “do not move” policy with zero rewards as 5 — 0 and for 5 < 0.
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Figure 6: Convergence behavior of the risk-sensitive algorithm based on learning () compared to risk-neutral
SAC.

C. Reformulating target in critic loss for numerically
stable log-sum-exp computation

The critic loss function reads

1 N\ 2
JQ<9) = E(s,a,r,d,s’)~D l§ <Q9(57 a) - Q) ] )
A~ 1
Q= 5 log (ms(s")" - exp (B (r + 7 (Qp (') — - my(s")  log ms(s"))))) -
The computation of this target Q has a log-sum-exp structure, which is known to be numeri-
cally unstable when implemented naively. Thus, we rewrite it using the following trick, based

on Section 5.2 of Nesterov (2005): for some variable x, that depends on the action a, we define
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Yo = T4 — T, with T independent of a, and get

%log (2 m(als) - eﬁx“> =7+ %log (2 7(als) -eﬁy“> :

a a

We choose © = max, =, and use this identity to rewrite Q as follows:

~

Q=1—ya- 7m4s(s) logmy(s') + v max Qy(s', a’)

+ % log (Z mola'|s) - exp (B (Qals', o) — g Q9<S/’a/))>) |

D. Pseudocode

We provide the pseudocode for our risk-sensitive discrete SAC algorithm in Algorithm 1. Here, 6;
for i € {1, 2} refers to the parameters of the two critics which we train concurrently as explained
in Section 2.1. Besides, A is the learning rate and 7 is the smoothing factor for the exponential

moving average used to update the target critic parameters.

Algorithm 1 Risk-sensitive discrete Soft Actor-Critic
1: Initialize NN parameters ¢, 6;, 0; for i € {1,2}
2: Initialize an empty replay buffer D
3: Initialize the environment, observe s
4: for each iteration do
a ~ my(als)
Execute a in the environment and observe r, s’
D — Du{(s,a,rs)}
s g
Sample a batch of transitions from D
10: ‘91<—92—/\V92JQ(92> forz e {1,2}
1: O~ (1 —7)-0; +7-0;forie{l,2}
120 99—\ VyJo(d)
13: end for

A A

E. Details on experiments

In the following, we firstly provide details on our state encoding and NN architectures. Secondly,

we report the hyperparameters used in our experiments.

E.1. State encoding and neural networks

The state of our environment can be naturally encoded as a 5x5 image with one channel per type of

element contained in the system: the target location, the agent, and the items. The target location
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channel has only zero entries except for the target location, which we represent by a one. The
agent channel has only zero entries except for the agent’s current location. At this location, the
entry is 0.5 if the agent has picked up but not yet delivered an item. Otherwise, this entry is one.
The items channel has only zero entries except for locations with items that have not been picked
up and did not disappear because the maximum response time elapsed. Such an entry is equal
to the number of time steps remaining until the respective item will disappear, normalized by the
maximum response time.

We use a combination of convolutional and fully connected layers in our NNs. Except for the
output activation function, all NNs have the same architecture. We use the following sequence of

layers:

* Convolutional layer 1: 2D convolutional layer with 32 filters of size 3x3 with stride one,

same padding and ReL.U activation

* Convolutional layer 2: 2D convolutional layer with 64 filters of size 2x2 with stride one,

same padding and ReL.U activation

* Convolutional layer 3: 2D convolutional layer with 64 filters of size 2x2 with stride one,

same padding and ReL.U activation
* Flatten layer
* Fully connected layer 1: fully connected layer with 256 units and ReLU activation
* Fully connected layer 2: fully connected layer with 256 units and ReLU activation

* Output layer: fully connected layer with 5 units (for the 5 possible actions) and softmax

activation for the actor network and linear activation for the critic networks, respectively

We use L2 regularization for the NN parameters with a regularization coefficient of 1074,

E.2. Hyperparameters

We train for 2 million steps, update the network parameters every 20 steps, and test the performance
of the current policy on the validation data every 5,000 steps. During the first 20,000 steps, we
collect experience with a random policy and do not update the network parameters.

We set the discount factor to 0.99. We sample batches of size 512 from a replay buffer with
maximum size 200,000. When we sample transitions from the replay buffer, we normalize the
sampled rewards by dividing them by the standard deviation of all rewards currently stored in the
replay buffer. For the critic loss, we use the Huber loss with a delta value of 2 instead of the squared
error. Moreover, we use gradient clipping with a clipping ratio of 10 for actor and critic gradients.
To update the NN parameters, we use the Adam optimizer with a learning rate of 3 - 10~%. For
the update of the target critic parameters, we use an exponential moving average with smoothing
factor 5 - 1073,
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We tune the entropy coefficient individually per experiment and use values between 0.1 and 0.3

across our experiments. After 800,000 training steps, we set it to zero as explained in Section 3.2.

F. L2 regularization

The non-robust discrete SAC algorithm already uses L2 regularization with an L2 regularization
coefficient of 0.0001, since we find through hyperparameter tuning that this maximizes perfor-
mance on the validation data from the gradient 1 distribution. To investigate if L2 regularization
improves the algorithm’s robustness against distribution shifts, we increase the L2 regularization
coefficient. Figure 7 shows the experimental results. We also tried even larger values for the 1.2
regularization coefficient than the ones depicted here, but find that they lead to learning a “do not
move” policy with zero rewards due to over-regularization. Based on the results in Figure 7, we
conclude that L2 regularization does not improve the robustness of SAC against distribution shifts

within our environment.

Performance gain over greedy: SAC with increased
L2 regularization under distribution shifts vs.
non-robust SAC trained on shifted distributions

Testing on Avg. over test instances
gradient 1 excl. gradient 1
100% —® 20% @
©
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Figure 7: Performance of L2 regularization to improve robustness. The left plot shows the performance on the
test data for the training distribution. The right plot shows the average over all other distributions,
i.e., the performance under distribution shifts. The data points for an L2 regularization coefficient of
0.0001 show the results for the non-robust discrete SAC algorithm. We report all results relative to
SAC’s performance when trained on the shifted, i.e., the true distribution as explained in Section 3.3.
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G. Combination of risk-sensitivity and entropy
regularization

We combine our risk-sensitive algorithm with entropy regularization to evaluate if this combination
improves upon the two approaches’ individual performance. Figure 8 shows the experimental
results. None of the tested configurations for S and « improves upon the best results for pure

risk-sensitivity or pure entropy regularization in Figure 4.

Performance gain over greedy: robust algorithms under distri-
bution shifts vs. non-robust SAC trained on shifted distributions

B=—-2.0 B=—-3.0 B=—-4.1
° °
100% — 100% —® 100%
°
o —  80% ° 80% — 80% —
SR °
gﬁé 60% o 0% - 60% - ®
B=gS
é go 40% - 40% - 40% —
20% — 20% 20% —
0% — 0% — ° 0% —
| | | | | | | | |
00 01 02 00 01 02 00 01 02
" 100% 100% 100%
(]
‘g 7% 75% 75%
ZE 5% % _ e 50% - 50% g
RS oo ® W
%S 25% o ol 2% 25% —
L =
g 8 gy, 0% - 0% —
p—
3 2 —25% ~25% ~25%
. O
:%’ ~50% — ~50% — ~50%
°
| | | | | | | | |
00 01 02 00 01 02 00 01 02

Entropy coefficient a

Figure 8: Performance of combining our risk-sensitive algorithm with entropy regularization to further im-
prove robustness. The top row shows the performance on the test data for the training distribution.
The bottom row shows the average over all other distributions, i.e., the performance under distribu-
tion shifts. The left-most data point in each plot shows the results for our risk-sensitive algorithm
without entropy regularization. There are no data points for « € {0.15,0.2} in the right-most plots,
because the corresponding training runs converge to a validation reward that is substantially worse
than the greedy performance on the gradient 1 distribution. We report all results relative to SAC’s
performance when trained on the shifted, i.e., the true distribution as explained in Section 3.3.
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1 Main findings of the thesis

With increasing urbanization, intra-city mobility becomes ever more important to meet the daily
transportation needs of individuals. While privately owned cars are not a sustainable solution to
satisfy this transportation demand, autonomous mobility on demand (AMoD) promises to become
a more sustainable and simultaneously attractive transportation mode with widespread adoption
as soon as fully autonomous vehicles are available. Different from today’s non-autonomous mo-
bility on demand (MoD) systems, AMoD enables full control by a central operator. To leverage
the potential of centralized, coordinated control over the vehicle fleet, smart vehicle dispatching
policies will be necessary. In principle, deep reinforcement learning (DRL) is well suited to learn
such dispatching policies, as it is designed for anticipative decision-making in sequential, stochas-
tic problem settings. However, challenges remain for its application in practice. Particularly,
single-agent DRL is not scalable to realistic system sizes, while it is not straightforward to use a
multi-agent approach to coordinate an AMoD vehicle fleet. Moreover, DRL is sensitive to changes
in environment parameters, like shifts in the customer demand distribution, which can frequently
appear in practice. Against this background, this thesis contributes novel DRL algorithms, aiming
to facilitate future deployment of efficient and reliable AMoD systems. The first methodologi-
cal chapter addresses the question how to use DRL to dispatch a large number of vehicles while
preserving coordination. The second methodological chapter focuses on the robustness of DRL
against distribution shifts.

Chapter 3 develops an algorithm to solve the online dispatching problem of a profit-maximizing,
central AMoD system operator. This problem, where customer requests are assigned to a vehicle or
rejected, is formulated as a Markov decision process (MDP), accounting for multiple constraints to
resemble a realistic system setup. The chapter develops a novel hybrid multi-agent DRL algorithm,
considering each request-vehicle combination as one agent. The algorithm allows for a variable
number of requests across time steps and is scalable due to a multi-agent approach with parameter
sharing. To coordinate multiple DRL agents and obtain a global decision for the central operator,
the algorithm integrates multi-agent Soft Actor-Critic (SAC) and optimization-based centralized
decision-making through weighted bipartite matching. Thereby, this hybrid algorithm combines
the advantages of multi-agent approaches, DRL, and combinatorial optimization. First, the agents
are trained using local rewards. Then, the algorithm is extended to incorporate global rewards
by introducing credit assignment based on a novel counterfactual baseline to resolve goal con-
flicts between the trained agents and the operator’s global objective. Since this algorithm based on
purely global rewards scales only to medium-sized problem instances, Chapter 3 derives a sched-
uled algorithm that combines the algorithms with local and global rewards. Experiments based
on real-world data show that the hybrid multi-agent DRL algorithm is superior to a model predic-
tive control (MPC) algorithm with respect to performance, stability, and computational tractability.
Moreover, the local rewards algorithm (LRA) outperforms a greedy policy by up to 5%. Incorpo-
rating global rewards increases the performance additionally by up to 2%, due to improved implicit

vehicle balancing and demand forecasting.
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Chapter 4 formally derives a novel risk-sensitive DRL algorithm that exhibits robustness against
distribution shifts in numerical experiments. Specifically, the chapter introduces discrete SAC for
the entropic risk measure by deriving a version of the Bellman equation for the respective ()-values,
establishing a corresponding policy improvement result and inferring a practical algorithm. It is
a model-free, off-policy algorithm that learns from single trajectories. Also, it provides a princi-
pled approach to explicitly control the consistency-robustness tradeoff, i.e., the tradeoff between
learning a policy that consistently achieves high expected returns on the training distribution and
a policy that is robust against distribution shifts at the price of lower yet good performance across
distributions. Moreover, the presented algorithm requires only a small modification relative to
risk-neutral SAC from an implementation perspective and is therefore easily applicable in practice.
Experiments in an environment that abstracts typical contextual multi-stage stochastic combina-
torial optimization problems, including the dispatching problem in AMoD systems, empirically
validate the algorithm’s robustness against realistic distribution shifts. The proposed risk-sensitive
algorithm improves robustness compared to risk-neutral SAC, without performance loss on the
training distribution. It is also superior to two benchmark approaches for robust DRL, namely
manipulating the training data and entropy regularization, due to its more general applicability and
a better consistency-robustness tradeoff.

In conclusion, this thesis contributes new algorithms to control AMoD fleets efficiently and re-
liably. The hybrid multi-agent SAC algorithm can learn an anticipative dispatching policy for a
large system size without compromising effective system-level coordination. The risk-sensitive
SAC algorithm can learn policies that are robust against distribution shifts without compromising
performance on the training distribution. Moreover, the developed methodology is relevant beyond
AMoD system control. The hybrid multi-agent SAC algorithm is applicable whenever stochastic
demands must be matched to scarce resources in a contextual multi-stage environment. Whenever
multiple cooperative DRL agents must be trained with global rewards and an actor-critic algo-
rithm, but a straightforward application of Counterfactual Multi-Agent Policy Gradient (COMA)
is not feasible, the novel counterfactual baseline allows for credit assignment. Furthermore, the
presented risk-sensitive SAC algorithm is a new risk-sensitive DRL algorithm for discrete action
spaces that can be applied whenever risk-averse behavior (e.g., to improve robustness against envi-
ronment perturbations) or risk-seeking behavior (e.g., to incentivize exploration of particular parts
of the state-action space) is desired, in any problem with discrete actions to which DRL is applied.
Finally, the robustness study provides a structured analysis of different approaches to improve
the robustness of DRL under distribution shifts in the realm of contextual multi-stage stochastic

combinatorial optimization (CO) problems.
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2 Limitations of the thesis and future research directions

Although this thesis provides valuable algorithmic contributions to control AMoD fleets, as well as
to the fields of multi-agent and robust DRL in general, a few comments on limitations and possible
extensions of the presented research are in order.

For AMoD dispatching, the experiments are limited to training a policy for a fleet of at most 250
vehicles. While this will be a reasonable size for many AMoD operators in many cities, real-world
systems might require even more vehicles to serve customer demand, particularly in very large
metropolitan areas like New York City. Scaling up the introduced algorithm might be primarily a
software engineering effort provided sufficient hardware resources for the case of local rewards.
With global rewards, however, it is not clear a priori if the algorithm can be used with more agents
without performance loss. Thus, using the work presented in this thesis as the basis to develop
a global-rewards-based algorithm that is applicable with even more agents remains an interesting
task for future research.

Furthermore, the experiments use episodes that last for one hour. It is realistic to assume that
customer demand patterns have primarily a spatial, but not a temporal structure within this time
horizon. To operate an AMoD system over a 24h horizon, one could train separate models for each
one hour time interval. Nevertheless, testing and potentially extending the presented approach to
account for spatio-temporal demand patterns, i.e., using a single model for longer time horizons,
is another direction for future work.

Besides, the operator of an AMoD system might want to make additional decisions apart from
dispatching, particularly to proactively rebalance the vehicle fleet in anticipation of future customer
demand and to schedule charging breaks for electric vehicles. Expanding the action space accord-
ingly and developing an algorithm for integrated decision-making across these different types of
actions is of great practical interest. Such an algorithm can build upon the methodology presented
in Chapter 3 for the dispatching decisions.

In addition, extending the robustness analysis to the multi-agent case and combining the multi-
agent approach with a risk-sensitive objective function, thereby combining the algorithmic con-
tributions of Chapter 3 and Chapter 4, promises to be an interesting and valuable way to further
advance the research presented in this thesis. Based on this, the robustness study could also be
applied to more specific and realistic problem settings with real data (e.g., the AMoD environ-
ment from Chapter 3), while the work presented here considers an abstract environment, aiming to
provide a general analysis.

While the robustness analysis and performance analysis of the risk-sensitive algorithm in this
thesis focus on distribution shifts, they provide the basis for an extension to other disturbances. For
example, one can apply the same algorithmic approaches to improve robustness when considering
disturbances to other components of the transition function like the maximum response time, or
disturbances to the reward function.

Finally, the theoretical results provided in Chapter 4 can be used to derive further risk-sensitive

DRL algorithms for the entropic risk measure. Particularly, risk-sensitive versions of Deep Q-
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Network (DQN) and SAC for continuous actions can be straightforwardly obtained based on the
theory developed in this thesis. With the latter, the presented robustness methodology could also

be leveraged for applications that require continuous actions, e.g., in robotics.
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