User: Guest  Login
Title:

Artificial intelligence-enabled phenotyping of patients with severe aortic stenosis: on the recovery of extra-aortic valve cardiac damage after transcatheter aortic valve replacement

Document type:
Zeitschriftenaufsatz
Author(s):
Lachmann, Mark ; Rippen, Elena ; Schuster, Tibor ; Xhepa, Erion ; von Scheidt, Moritz ; Trenkwalder, Teresa ; Pellegrini, Costanza ; Rheude, Tobias ; Hesse, Amelie ; Stundl, Anja ; Harmsen, Gerhard ; Yuasa, Shinsuke ; Schunkert, Heribert ; Kastrati, Adnan ; Laugwitz, Karl-Ludwig ; Joner, Michael ; Kupatt, Christian
Keywords:
Valvular heart disease ; aortic valve stenosis ; transcatheter aortic valve replacement ; echocardiography
Journal title:
Open Heart
Year:
2022
Journal volume:
9
Journal issue:
2
Fulltext / DOI:
doi:10.1136/openhrt-2022-002068
Publisher:
British Cardiovascular Society
E-ISSN:
2053-3624
Date of publication:
19.10.2022
 BibTeX