This thesis extends Standard Perturbation Theory (SPT) for cosmic structure formation by introducing higher cumulants via orbit crossing, inventing Vlasov Perturbation Theory (VPT). VPT addresses SPT limitations, e.g. small-scale backreaction. Linear/Nonlinear kernels in VPT suppress modes crossing dispersion scale, enabling nonlinear corrections even for blue power spectra. N-body comparisons confirm agreement up to nonlinear scale. Vorticity power spectrum, momentum conservation, and stochastic GW background are discussed. Techniques for dark matter clustering can improve through understanding collisionless dynamics.
«
This thesis extends Standard Perturbation Theory (SPT) for cosmic structure formation by introducing higher cumulants via orbit crossing, inventing Vlasov Perturbation Theory (VPT). VPT addresses SPT limitations, e.g. small-scale backreaction. Linear/Nonlinear kernels in VPT suppress modes crossing dispersion scale, enabling nonlinear corrections even for blue power spectra. N-body comparisons confirm agreement up to nonlinear scale. Vorticity power spectrum, momentum conservation, and stochasti...
»