Benutzer: Gast  Login
Titel:

SSL4EO-S12: A Large-scale Multimodal Multitemporal Dataset for Self-supervised Learning in Earth Observation

Dokumenttyp:
Forschungsdaten
Veröffentlichungsdatum:
14.06.2022
Verantwortlich:
Zhu, Xiaoxiang
Autorinnen / Autoren:
Wang, Yi; Ait Ali Braham, Nassim; Albrecht, Conrad M; Xiong, Zhitong; Liu, Chenying; Zhu, Xiaoxiang
Institutionszugehörigkeit:
TUM
Herausgeber:
TUM
Identifikator:
doi:10.14459/2022mp1660427.001
Konzept-DOI:
doi:10.14459/2022mp1660427
Enddatum der Datenerzeugung:
31.03.2022
Fachgebiet:
DAT Datenverarbeitung, Informatik; GEO Geowissenschaften
Quellen der Daten:
Abbildungen von Objekten / image of objects
Datentyp:
Bilder / images
Methode der Datenerhebung:
Automatic download, image preparation and processing using Google Earth Engine and Python
Beschreibung:
The SSL4EO-S12 dataset is a large-scale dataset for unsupervised/self-supervised pre-training in Earth observation. The dataset consists of unlabeled patch triplets (Sentinel-1 dual-pol SAR, Sentinel-2 top-of-atmosphere multispectral, Sentinel-2 surface reflectance multispectral) from 251079 locations across the globe, each patch covering 2640mx2640m and including four seasonal time stamps. The raw dataset is provided in GeoTiff format, with each band being one single file.
Links:

Additional information: https://github.com/zhu-xlab/SSL4EO-S12

A compressed version (Sentinel-2 8-bit, Sentinel-1 8-bit) of the data can be found under: https://mediatum.ub.tum.de/1702379
Schlagworte:
Self-supervised Learning; Remote Sensing; Earth Observation; Sentinel-1/2
Technische Hinweise:
View and download (1,5 TB total, 3 Files)
The data server also offers downloads with FTP
The data server also offers downloads with rsync (password m1660427.001):
rsync rsync://m1660427.001@dataserv.ub.tum.de/m1660427.001/
Sprache:
en
Rechte:
by, http://creativecommons.org/licenses/by/4.0
 BibTeX