The wealth of data and the enhanced computation capabilities of Internet of Vehicles (IoV) enable the optimized motion control of vehicles passing through an intersection without traffic lights. However, more intersections and demands for privacy protection pose new challenges to motion control optimization. Federated Learning (FL) can protect privacy via model interaction in IoV, but traditional FL methods hardly deal with the transportation issue. To address the aforementioned issue, this study proposes a Traffic-Aware Federated Imitation learning framework for Motion Control (TAFI-MC), consisting of Vehicle Interactors (VIs), Edge Trainers (ETs), and a Cloud Aggregator (CA). An Imitation Learning (IL) algorithm is integrated into TAFI-MC to improve motion control. Furthermore, a loss-aware experience selection strategy is explored to reduce communication overhead between ETs and VIs. The experimental results show that the proposed TAFI-MC outperforms imitated rules in the respect of collision avoidance and driving comfort, and the experience selection strategy can reduce communication overheads while ensuring convergence.
«
The wealth of data and the enhanced computation capabilities of Internet of Vehicles (IoV) enable the optimized motion control of vehicles passing through an intersection without traffic lights. However, more intersections and demands for privacy protection pose new challenges to motion control optimization. Federated Learning (FL) can protect privacy via model interaction in IoV, but traditional FL methods hardly deal with the transportation issue. To address the aforementioned issue, this stud...
»