A large number of process routes is available for the production of sustainable energy carriers from biogenic
residues. Benchmarking these routes usually suffers from a lack of comparable performance data. The present
work addresses this through a comprehensive model-based comparison of various biomass-to-X routes. Herein,
seven routes (methanol, synthetic natural gas, dimethyl ether, Fischer-Tropsch syncrude, ammonia, and
hydrogen with and without carbon capture) are modelled in detailed Aspen Plus® simulations. The evaluation
itself is based on various key performance indicators, which capture both energetic (i.e. energy yield and usable
heat per feedstock) and material-based (i.e. carbon and hydrogen conversion efficiency, and CO2 emissions)
properties of the routes. The results show, that no simple correlations can be drawn between energetic and
material-based indicators. In summary across all considered properties, the methanol route exhibits the best
combined results, in particular with the highest carbon efficiency of 40 %. Fischer-Tropsch is more suitable for
integration into existing industrial parks due to the lowest energy yield of 40 % with a lot of by-product formation
and the highest amount of useable heat per feedstock of 211.3 kWMW 1. Whereas dimethyl ether and
synthetic natural gas have potential for integration into heat grids, mainly due to their good conversion and
simultaneous large heat dissipation. Ammonia and hydrogen should only be considered in combination with
carbon capture. Therefore, the key performance indicators determined herein must be considered together with
project- and location-specific requirements and the market outlook for the product.
«
A large number of process routes is available for the production of sustainable energy carriers from biogenic
residues. Benchmarking these routes usually suffers from a lack of comparable performance data. The present
work addresses this through a comprehensive model-based comparison of various biomass-to-X routes. Herein,
seven routes (methanol, synthetic natural gas, dimethyl ether, Fischer-Tropsch syncrude, ammonia, and
hydrogen with and without carbon capture) are modelled in detailed As...
»