Benutzer: Gast  Login
Titel:

Modeling Lithium-Ion Batteries Using Machine Learning Algorithms for Mild-Hybrid Vehicle Applications

Dokumenttyp:
Konferenzbeitrag
Art des Konferenzbeitrags:
Textbeitrag / Aufsatz
Autor(en):
Daniel Jerouschek, Ömer Tan, Ralph Kennel, Ahmet Taskiran
Abstract:
The prediction of voltage levels in an automotive 48V mild hybrid power supply system is safety-relevant while also enabling greater efficiency. The high power-to-energy ratio in these power supply systems makes exact voltage prediction challenging, so that a method is established to model the behavior of the lithium-ion batteries by means of a recurrent neural network. The raw data are consequently pre-processed with over- and undersampling, normalization and sequentialization algorithms. The r...     »
Kongress- / Buchtitel:
Proceedings of SEST2021 - the 4th International Conference on Smart Energy Systems and Technologies (SEST)
Ausrichter der Konferenz:
University of Vaasa 2021
Datum der Konferenz:
6-8 September 2021
Verlag / Institution:
IEEE
Publikationsdatum:
27.09.2021
Jahr:
2021
Quartal:
3. Quartal
Jahr / Monat:
2021-09
Monat:
Sep
Print-ISBN:
978-1-7281-7661-1
E-ISBN:
978-1-7281-7660-4
Reviewed:
ja
Sprache:
en
Volltext / DOI:
doi:10.1109/SEST50973.2021.9543225
Semester:
SS 21
TUM Einrichtung:
Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik
 BibTeX