Magneto-optical studies of Weyl semimetals have been proposed as a versatile tool for observing low-energy Weyl fermions in candidate materials including the chiral Landau level. However, previous theoretical results have been restricted to the linearized regime around the Weyl node and are at odds with experimental findings. Here, we derive a closed form expression for the magneto-optical conductivity of generic Weyl semimetals in the presence of an external magnetic field aligned with the tilt of the spectrum. The systems are taken to have linear dispersion in two directions, while the tilting direction can consist of any arbitrary continuously differentiable function. This general calculation is then used to analytically evaluate the magneto-optical conductivity of Weyl semimetals expanded to cubic order in momentum. In particular, systems with arbitrary tilt, as well as systems hosting trivial Fermi pockets are investigated. The higher-order terms in momentum close the Fermi pockets in the type-II regime, removing the need for unphysical cutoffs when evaluating the magneto-optical conductivity. Crucially, the ability to take into account closed over-tilted and additional trivial Fermi pockets allows us to treat model systems closer to actual materials and we propose a simple explanation why the presence of parasitic trivial Fermi pockets can mask the characteristic signature of Weyl fermions in magneto-optical conductivity measurements.
«
Magneto-optical studies of Weyl semimetals have been proposed as a versatile tool for observing low-energy Weyl fermions in candidate materials including the chiral Landau level. However, previous theoretical results have been restricted to the linearized regime around the Weyl node and are at odds with experimental findings. Here, we derive a closed form expression for the magneto-optical conductivity of generic Weyl semimetals in the presence of an external magnetic field aligned with the tilt...
»