In the late 1960s, a new concept was proposed for an infrared absorbing device called a “rectenna” that, combining an antenna and a nanoscale metal-insulator-metal diode rectifier, collects electromagnetic radiation in the terahertz regime, with applications as detectors and energy harvesters. Previous theories hold that the diode rectifies the induced terahertz currents. Our results, however, demonstrate that the Seebeck thermal effect is the actual dominant rectifying mechanism. This new realization that the underlying mechanism is thermal-based, rather than tunneling-based, can open the way to important new developments in the field, since the fabrication process of rectennas based on the Seebeck effect is far simpler than existing processes that require delicate tunnel junctions. We demonstrate for the first time the fabrication of a rectenna array using an efficient parallel transfer printing process featuring nearly one million elements.
«
In the late 1960s, a new concept was proposed for an infrared absorbing device called a “rectenna” that, combining an antenna and a nanoscale metal-insulator-metal diode rectifier, collects electromagnetic radiation in the terahertz regime, with applications as detectors and energy harvesters. Previous theories hold that the diode rectifies the induced terahertz currents. Our results, however, demonstrate that the Seebeck thermal effect is the actual dominant rectifying mechanism. This new reali...
»