We present a physically-based multi-energy domain coupled model that allows for the predictive simulation of the dynamic response of electrostatically controlled and viscously damped RF-MEMS switches. The coupling effects occurring during dynamic operation, namely increased damping due to the decreasing gap height and electrostatic spring softening are correctly implemented in the model and, therefore, accurately reproduced. The model is able to account for varying ambient pressure conditions and shows good agreement with measurements ranging from 960hPa down to approx. 200hPa.
«
We present a physically-based multi-energy domain coupled model that allows for the predictive simulation of the dynamic response of electrostatically controlled and viscously damped RF-MEMS switches. The coupling effects occurring during dynamic operation, namely increased damping due to the decreasing gap height and electrostatic spring softening are correctly implemented in the model and, therefore, accurately reproduced. The model is able to account for varying ambient pressure conditions an...
»