Email
Print
Request Permissions
Save to Project
This paper investigates the behavior of large-scale crossbar memory arrays, built from molecular switches. We construct SPICE models based on experimental I(V) curves and investigate how critical circuit parameters (read-out margin, power dissipation, and speed) scale with circuit size. We concentrate on the read-out process. We explore the effect of nonlinear/rectifying elements placed at the junctions and conclude that scalable crossbar memories could be built using molecules with nonlinear, nonrectifying behavior in the molecular I(V) curve. The ultimate achievable storage capacity of these arrays is estimated and prescriptions for optimized molecular switches are provided.
Print
Request Permissions
Save to Project
This paper investigates the behavior of large-scale crossbar memory arrays, built from molecular switches. We construct SPICE models based on experimental I(V) curves and investigate how critical circuit parameters (read-out margin, power dissipation, and speed) scale with circuit size. We concentrate on the read-out process. We explore the effect of nonlinear/rectifying elements placed at the junctions and conclude that scalable crossbar memories could be built using molecules with nonlinear, nonrectifying behavior in the molecular I(V) curve. The ultimate achievable storage capacity of these arrays is estimated and prescriptions for optimized molecular switches are provided.
«
Email
Print
Request Permissions
Save to Project
This paper investigates the behavior of large-scale crossbar memory arrays, built from molecular switches. We construct SPICE models based on experimental I(V) curves and investigate how critical circuit parameters (read-out margin, power dissipation, and speed) scale with circuit size. We concentrate on the read-out process. We explore the effect of nonlinear/rectifying elements place...
»