User: Guest  Login
Title:

Microwave dielectric loss at single photon energies and millikelvin temperatures

Document type:
Zeitschriftenaufsatz
Author(s):
O'Connell, Aaron D.; Ansmann, M.; Bialczak, R. C.; Hofheinz, M.; Katz, N.; Lucero, Erik; McKenney, C.; Neeley, M.; Wang, H.; Weig, E. M.; Cleland, A. N.; Martinis, J. M.
Abstract:
The microwave performance of amorphous dielectric materials at very low temperatures and very low excitation strengths displays significant excess loss. Here, we present the loss tangents of some common amorphous and crystalline dielectrics, measured at low temperatures (T < 100 mK) with near single-photon excitation energies, E/h omega(0)similar to 1, using both coplanar waveguide and lumped LC resonators. The loss can be understood using a two-level state defect model. A circuit analysis of the half-wavelength resonators we used is outlined, and the energy dissipation of such a resonator on a multilayered dielectric substrate is theoretically considered. (c) 2008 American Institute of Physics.
Keywords:
Silica
Journal title:
APPLIED PHYSICS LETTERS Volume: 92 Issue: 11 Article Number: 112903 2008-03
Year:
2008
Year / month:
2008-03
Quarter:
1. Quartal
Month:
Mar
Language:
en
Fulltext / DOI:
doi:10.1063/1.2898887
WWW:
https://publons.com/publon/6045580/
Publisher:
Applied Physics Letters AIP, Clarivate Web of Science
 BibTeX