Benutzer: Gast  Login
Dokumenttyp:
Masterarbeit
Autor(en):
Amine M'Charrak
Titel:
Deep Learning for Natural Language Processing (NLP) using Variational Autoencoders (VAE)
Übersetzter Titel:
Deep Learning for Natural Language Processing (NLP) using Variational Autoencoders (VAE)
Abstract:
Observations of complex data in the real world might be caused by several underlying generative factors that account for specific perceptual features. However, these factors are usually entangled and can not be underlined directly from the data. Modeling such factors could generalize the learning of complex concepts through compositions of simpler abstractions. This enables us to understand the inner structure of the data, to process it efficiently and to control meaningful generative processes...     »
übersetzter Abstract:
Observations of complex data in the real world might be caused by several underlying generative factors that account for specific perceptual features. However, these factors are usually entangled and can not be underlined directly from the data. Modeling such factors could generalize the learning of complex concepts through compositions of simpler abstractions. This enables us to understand the inner structure of the data, to process it efficiently and to control meaningful generative processe...     »
Stichworte:
generative models, disentanglement, variational inference, natural language processing, autoencoder
Fachgebiet:
DAT Datenverarbeitung, Informatik
DDC:
000 Informatik, Wissen, Systeme
Betreuer:
Steinbach, Eckehard (Prof. Dr.)
Jahr:
2018
Seiten/Umfang:
130
Sprache:
en
Sprache der Übersetzung:
en
Hochschule / Universität:
Technische Universität München
Fakultät:
Fakultät für Elektrotechnik und Informationstechnik
 BibTeX