Benutzer: Gast  Login
Dokumenttyp:
IDP-Arbeit
Art der Studienarbeit:
Experimentell
Autor(en):
Rao, R
Titel:
Adaptive Scheduling for Production Systems using Deep Reinforcement Learning
Abstract:
This study tackles the multi-objective scheduling problem for hybrid flow shops, focusing on optimizing makespan and tardiness while adapting to user-defined priorities. We propose a reinforcement learning based solution with a time-dynamic environment that enables realtime decision-making. The relative importance of objectives is directly integrated into the observation space. Evaluated across four setups of varying complexity, the approach shows promising results for simpler setups but faces c...     »
Betreuer:
Dörr, J.
Gutachter:
Grunow, M.
Jahr:
2025
Sprache:
en
Hochschule / Universität:
Technical University Munich
 BibTeX