Benutzer: Gast  Login
Dokumenttyp:
Bachelorarbeit
Autor(en):
Amine M'Charrak
Titel:
Clustering Algorithms for Lossy Data Compression
Übersetzter Titel:
Clustering Algorithms for Lossy Data Compression
Abstract:
In this work, we compare different clustering algorithm implementations and optimize them with regards to their distortion behavior. The preferred clustering method for lossy data compression depends on the scenario or application we want to apply it to. After implementing the K-means algorithm and optimizing it towards the excess distortion performance criterion for a binary memoryless channel, we compare our found results with the achievability and converse results from related literature. We...     »
übersetzter Abstract:
In this work, we compare different clustering algorithm implementations and optimize them with regards to their distortion behavior. The preferred clustering method for lossy data compression depends on the scenario or application we want to apply it to. After implementing the K-means algorithm and optimizing it towards the excess distortion performance criterion for a binary memoryless channel, we compare our found results with the achievability and converse results from related literature. We...     »
Fachgebiet:
DAT Datenverarbeitung, Informatik
DDC:
000 Informatik, Wissen, Systeme
Betreuer:
Palzer, Lars
Gutachter:
Kramer, Gerhard (Prof. Dr.)
Jahr:
2016
Seiten/Umfang:
82
Sprache:
en
Sprache der Übersetzung:
en
Hochschule / Universität:
Technische Universität München
Fakultät:
Fakultät für Elektrotechnik und Informationstechnik
 BibTeX