Benutzer: Gast  Login
Titel:

So2Sat POP Part 2

Dokumenttyp:
Forschungsdaten
Veröffentlichungsdatum:
07.11.2022
Verantwortlich:
Zhu, Xiao Xiang
Autorinnen / Autoren:
Doda, Sugandha; Wang, Yuanyuan; Kahl, Matthias; Eike Jens Hoffmann; Kim Ouan, Taubenböck, Hannes; Zhu, Xiao Xiang
Institutionszugehörigkeit:
Doda, Sugandha (TUM); Wang, Yuanyuan (TUM); Kahl, Matthias (TUM); Eike Jens Hoffmann (TUM); Kim Ouan (TUM); Taubenböck, Hannes (DLR, JMU); Zhu, Xiao Xiang (TUM)
Herausgeber:
TUM
Identifikator:
doi:10.14459/2021mp1633795
Enddatum der Datenerzeugung:
01.10.2021
Fachgebiet:
DAT Datenverarbeitung, Informatik; GEO Geowissenschaften
zusätzliche Fachgebiete:
Remote Sensing; Machine Learning; Population Modelling
Quellen der Daten:
Experimente und Beobachtungen / experiments and observations; Statistik und Referenzdaten / statistics and reference data
Datentyp:
Bilder / images; Texte / texts
Methode der Datenerhebung:
Semi-automatic data processing, Python and GDAL
Beschreibung:
A comprehensive data set for population estimation in 106 European cities. The final data set consists of two parts: So2Sat POP Part 1 and So2Sat POP Part 2. So2Sat POP Part 1 comprises local climate zone, land use classifications, nighttime lights in combination with multi-spectral Sentinel-2 imagery, and data from the Open Street Map initiative. So2Sat POP Part 2 consists of digital elevation model.
Links:

 

Link to the So2Sat POP Part1: https://doi.org/10.14459/2021mp1633792

Link to the Source Code: https://github.com/zhu-xlab/So2Sat-POP

Link to the corresponding article https://doi.org/10.1038/s41597-022-01780-x

Schlagworte:
Remote sensing; deep learning; population estimation; population modelling; data fusion; gridded population distribution mapping; large‐scale population mapping; dasymetric modelling; sustainable development
Technische Hinweise:
View and download (824 MB total, 2 Files)
The data server also offers downloads with FTP
The data server also offers downloads with rsync (password m1633795):
rsync rsync://m1633795@dataserv.ub.tum.de/m1633795/
Sprache:
en
Rechte:
by-sa, http://creativecommons.org/licenses/by-sa/4.0
Horizon 2020:
ERC-2016-StG-714087
 BibTeX