Abstract The conceptual design of fluid separation processes is particularly challenging if the considered mixtures are poorly specified, since classical thermodynamic models cannot be applied when the composition is unknown. We have recently developed a method (NEAT) to predict activity coefficients in such mixtures. It combines the thermodynamic group contribution concept with the ability of NMR spectroscopy to quantify chemical groups. In the present work, we describe how NEAT can be applied to equilibrium stage simulations of liquid–liquid extraction processes with poorly specified feeds. Only a single 13C NMR spectrum of the feed is needed for predicting the distribution of a target component for different process parameters, such as temperature or extracting agent. The predictions from several test cases are compared to results that are obtained using the full knowledge on the composition of the feed and surprisingly good agreement is found.
«
Abstract The conceptual design of fluid separation processes is particularly challenging if the considered mixtures are poorly specified, since classical thermodynamic models cannot be applied when the composition is unknown. We have recently developed a method (NEAT) to predict activity coefficients in such mixtures. It combines the thermodynamic group contribution concept with the ability of NMR spectroscopy to quantify chemical groups. In the present work, we describe how NEAT can be applied...
»