In this paper we consider regression models for count data allowing for overdispersion in a Bayesian framework. We account for unobserved heterogeneity in the data in two ways. On the one hand, we consider more flexible models than a common Poisson model allowing for overdispersion
in different ways. In particular, the negative binomial and the generalized Poisson distribution are addressed where overdispersion is modelled by an additional model parameter. Further, zero-inflated models in which overdispersion is assumed to be caused by an excessive number of zeros are
discussed. On the other hand, extra spatial variability in the data is taken into account by adding spatial random effects to the models. This approach allows for an underlying spatial dependency structure which is modelled using a conditional autoregressive prior based on Pettitt et al. (2002). In
an application the presented models are used to analyse the number of invasive meningococcal disease cases in Germany in the year 2004. Models are compared according to the deviance information criterion (DIC) suggested by Spiegelhalter et al. (2002) and using proper scoring rules, see for example Gneiting and Raftery (2004). We observe a rather high degree of overdispersion in the data which is captured best by the GP model when spatial effects are neglected. While the addition of spatial effects to the
models allowing for overdispersion gives no or only little improvement, a spatial Poisson model is to be preferred over all other models according to the considered criteria.
«
In this paper we consider regression models for count data allowing for overdispersion in a Bayesian framework. We account for unobserved heterogeneity in the data in two ways. On the one hand, we consider more flexible models than a common Poisson model allowing for overdispersion
in different ways. In particular, the negative binomial and the generalized Poisson distribution are addressed where overdispersion is modelled by an additional model parameter. Further, zero-inflated models in which...
»