Benutzer: Gast  Login
Titel:

Benchmarking Autoregressive Conditional Diffusion Models for Turbulent Flow Simulation

Dokumenttyp:
Forschungsdaten
Veröffentlichungsdatum:
12.02.2024
Verantwortlich:
Kohl, Georg
Autorinnen / Autoren:
Kohl, Georg; Chen, Li-Wei; Thuerey, Nils
Institutionszugehörigkeit:
TUM
Herausgeber:
TUM
Identifikator:
doi:10.14459/2024mp1734798.001
Konzept-DOI:
doi:10.14459/2024mp1734798
Enddatum der Datenerzeugung:
01.02.2024
Fachgebiet:
DAT Datenverarbeitung, Informatik; PHY Physik
Quellen der Daten:
Simulationen / simulations
Datentyp:
mehrdimensionale Visualisierungen oder Modelle / models; Datenbanken / data bases
Anderer Datentyp:
Compressed numpy arrays of dense spatial fields (like velocity, density, or pressure) and pretrained neural network model weights that can be loaded with pytorch
Beschreibung:
This archive contains spatio-temporal data from simulations of the Navier-Stokes equations: First, simulations of an incompressible wake flow at different Reynolds numbers simulated with PhiFlow. Second, a transonic cylinder flow simulated with SU2 at different Mach numbers. Finally, a curation of data from the Johns Hopkins Turbulence Database (JHTDB) is included, that features an isotropic turbulence flow simulated with a direct numerical simulation.
The isotropic turbulence data is made available under the Open Data Commons Attribution License (ODC-By) ( http://opendatacommons.org/licenses/by/). This means the data is open to use, but requires attribution to the original creators from the JHTDB (see https://turbulence.pha.jhu.edu/citing.aspx).
Furthermore, pretrained neural network model weights for flow prediction on each data set are provided, that can be used as described in more detail in our source code.
Links:

Project: https://ge.in.tum.de/publications/2023-acdm-kohl
Publication: https://arxiv.org/abs/2309.01745
Source Code: https://github.com/tum-pbs/autoreg-pde-diffusion

Schlagworte:
flow prediction; turbulent flow; PDEs; numerical simulation; diffusion models; autoregressive models
Technische Hinweise:
View and download (219 GB total, 8 Files)
The data server also offers downloads with FTP
The data server also offers downloads with rsync (password m1734798.001):
rsync rsync://m1734798.001@dataserv.ub.tum.de/m1734798.001/
Sprache:
en
Andere Rechte:
Isotropic turbulence data set (128_iso.zip): Open Data Commons Attribution License (ODC-By) http://opendatacommons.org/licenses/by/
Remaining data sets and models (all other archives): Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/
Horizon 2020:
ERC Consolidator Grant SpaTe (CoG-2019-863850)
 BibTeX