Benutzer: Gast  Login
Titel:

So2Sat LCZ42 v4: data with geolocation

Dokumenttyp:
Forschungsdaten
Veröffentlichungsdatum:
24.11.2025
Verantwortlich:
Zhu, Xiao Xiang
Autorinnen / Autoren:
Zhu, Xiaoxiang ; Hu, Jingliang ; Qiu, Chunping ; Shi, Yilei ; Bagheri, Hossein ; Kang, Jian ; Li, Hao ; Mou, Lichao ; Zhang, Guicheng ; Häberle, Matthias ; Han, Shiyao ; Hua, Yuansheng ; Huang, Rong ; Hughes, Lloyd ; Sun, Yao ; Schmitt, Michael ; Wang, Yuanyuan
Institutionszugehörigkeit:
TUM
Herausgeber:
TUM
Identifikator:
doi:10.14459/2025mp1836598
Enddatum der Datenerzeugung:
30.08.2018
Fachgebiet:
BAU Bauingenieurwesen, Vermessungswesen; DAT Datenverarbeitung, Informatik; GEO Geowissenschaften
Quellen der Daten:
Abbildungen von Objekten / image of objects
Datentyp:
Bilder / images
Methode der Datenerhebung:
Sentinel-1 image downloaded from ESA SciHub, and prepared by ESA SNAP software.
Sentinel-2 image semi-automatically downloaded and prepared using Google Earth Engine and MATLAB. The local climate zones labels were manually labeled.
Beschreibung:
So2Sat LCZ42 is a dataset consisting of co-registered synthetic aperture radar and multispectral optical image patches acquired by the Sentinel-1 and Sentinel-2 remote sensing satellites, and the corresponding local climate zones (LCZ) label. The dataset is distributed over 42 cities across different continents and cultural regions of the world.
This is the 4th version with geolocation of all the training, validation, and testing patches, as well as the corresponding LCZ labels.
Links:

This is version 4 (patches and labels with geolocation) of the dataset. See links of the other versions below.

Link to version 1: https://mediatum.ub.tum.de/1650201
Link to version 2 (containing additional test data): https://mediatum.ub.tum.de/1483140
Link to version 3 (containing 2 more training testing splits): https://mediatum.ub.tum.de/1613658
 

This dataset relates to the publication: https://ieeexplore.ieee.org/document/9014553
Schlagworte:
Remote Sensing; Deep Learning; Change Detection; Semantic Segmentation
Technische Hinweise:
View and download (56 GB total, 9 Files)
The data server also offers downloads with FTP
The data server also offers downloads with rsync (password m1836598):
rsync rsync://m1836598@dataserv.ub.tum.de/m1836598/
Sprache:
en
Rechte:
by-sa, http://creativecommons.org/licenses/by-sa/4.0
Horizon 2020:
ERC-2016-StG-714087
 BibTeX