The complexity of automated production systems increases steadily - especially due to the rising customer demand to manufacture individualized goods. To stay competitive, companies in this domain need to adapt their engineering to deliver machines and plants with higher quality in shorter time. Hence, to reduce design errors and identify problems already in early engineering stages, it is essential to ensure that the disparate engineering models - e.g., from mechanical, electrical and software engineering - are free from inconsistencies. This paper presents a concept for inter-model inconsistency management. In particular, the proposed concept provides an interactive visualization approach that captures the dependencies between the different engineering models explicitly and visualizes them to the involved stakeholders. By that, the location of and cause for inconsistencies can be identified more easily; dependencies between the different engineering disciplines can be visualized in a comprehensive manner.
«
The complexity of automated production systems increases steadily - especially due to the rising customer demand to manufacture individualized goods. To stay competitive, companies in this domain need to adapt their engineering to deliver machines and plants with higher quality in shorter time. Hence, to reduce design errors and identify problems already in early engineering stages, it is essential to ensure that the disparate engineering models - e.g., from mechanical, electrical and software e...
»