User: Guest  Login
Title:

Parse Semantics from Geometry: A Remote Sensing Benchmark for Multi-modal Semantic Segmentation

Document type:
Forschungsdaten
Publication date:
24.06.2022
Responsible:
Zhu, Xiaoxiang;
Authors:
Xiong, Zhitong; Chen, Sining; Wang Yi; Zhu Xiao Xiang
Author affiliation:
TUM
Publisher:
TUM
Identifier:
doi:10.14459/2022mp1661568.001
Concept DOI:
doi:10.14459/2022mp1661568
End date of data production:
08.04.2022
Subject area:
DAT Datenverarbeitung, Informatik; GEO Geowissenschaften
Resource type:
Abbildungen von Objekten / image of objects
Data type:
Bilder / images
Description:
Geometric information in the normalized digital surface models (nDSM) is highly correlated with the semantic class of the land cover. Exploiting two modalities (RGB and nDSM (height)) jointly has a great potential to improve the segmentation performance. Towards a fair and comprehensive analysis of existing methods, in this paper, we introduce a remote sensing benchmark for multi-modal semantic segmentation based on RGB-Height (RGB-H) data. The introduced RSMSS dataset contains 9340 tiles collec...     »
Method of data assessment:
Automatic download, image preparation and processing using Python
Links:

Aditional Information: https://github.com/DeepAI4EO/Dataset4EO

Key words:
Remote Sensing; Earth Observation; Multi-modal Learning; Semantic Segmentation
Technical remarks:
View and download (48 GB total, 2 Files)
The data server also offers downloads with FTP
The data server also offers downloads with rsync (password m1661568):
rsync rsync://m1661568.001@dataserv.ub.tum.de/m1661568.001/
Language:
en
Rights:
by, http://creativecommons.org/licenses/by/4.0
 BibTeX