Benutzer: Gast  Login
Titel:

Parse Semantics from Geometry: A Remote Sensing Benchmark for Multi-modal Semantic Segmentation

Dokumenttyp:
Forschungsdaten
Veröffentlichungsdatum:
24.06.2022
Verantwortlich:
Zhu, Xiaoxiang;
Autorinnen / Autoren:
Xiong, Zhitong; Chen, Sining; Wang Yi; Zhu Xiao Xiang
Institutionszugehörigkeit:
TUM
Herausgeber:
TUM
Identifikator:
doi:10.14459/2022mp1661568.001
Konzept-DOI:
doi:10.14459/2022mp1661568
Enddatum der Datenerzeugung:
08.04.2022
Fachgebiet:
DAT Datenverarbeitung, Informatik; GEO Geowissenschaften
Quellen der Daten:
Abbildungen von Objekten / image of objects
Datentyp:
Bilder / images
Methode der Datenerhebung:
Automatic download, image preparation and processing using Python
Beschreibung:
Geometric information in the normalized digital surface models (nDSM) is highly correlated with the semantic class of the land cover. Exploiting two modalities (RGB and nDSM (height)) jointly has a great potential to improve the segmentation performance. Towards a fair and comprehensive analysis of existing methods, in this paper, we introduce a remote sensing benchmark for multi-modal semantic segmentation based on RGB-Height (RGB-H) data. The introduced RSMSS dataset contains 9340 tiles collec...     »
Links:

Aditional Information: https://github.com/DeepAI4EO/Dataset4EO

Schlagworte:
Remote Sensing; Earth Observation; Multi-modal Learning; Semantic Segmentation
Technische Hinweise:
View and download (48 GB total, 2 Files)
The data server also offers downloads with FTP
The data server also offers downloads with rsync (password m1661568):
rsync rsync://m1661568.001@dataserv.ub.tum.de/m1661568.001/
Sprache:
en
Rechte:
by, http://creativecommons.org/licenses/by/4.0
 BibTeX