Benutzer: Gast  Login
Dokumenttyp:
Buchbeitrag 
Autor(en):
Casazza, P. G., Christensen, O., Li, S. and Lindner, A. 
Titel:
Density results for frames of exponentials 
Abstract:
For a separated sequence Λ={λk}kεZ of real numbers there is a close link between the lower and upper densities D-(Λ); D+(Λ) and the frame properties of the exponentials {ekx}kεZ: in fact, {ekx}kεZ is a frame for its closed linear span in L2(-γ,γ) for any γε ]0,πD-(Λ)[ ∪ ]πD+(Λ),∞[. We consider a classical example presented already by Levinson [10] with D-(Λ) = D+(Λ) = 1; in this case, the frame property is guaranteed for all γε]0,∞[. We prove that the frame property actually breaks down for γ=π. Motivated by this example, it is natural to ask whether the frame property can break down on an interval if D-(Λ) = D+(Λ). The answer is yes: We present an example of a family Λ with D-(Λ)≠D+(Λ) for which {ekx} has no frame property in L2(-γ,γ) for any γε ]πD-(Λ),πD+(Λ)[. 
Seitenangaben Beitrag:
359-369 
Buchtitel:
Heil, C.: Harmonic Analysis and Applications 
Titelzusatz:
In Honor of John J. Benedetto 
Verlag / Institution:
Birkhäuser 
Jahr:
2006 
Reviewed:
ja 
Sprache:
en 
Semester:
SS 06 
Format:
Text