We report measurements of the pressure dependence of the low-temperature magnetization that show that the two pressure induced magnetic transitions in UGe2 are of first order. Further, the pressure dependence of the uniform susceptibility relative to the superconducting transition is not as expected if the latter is driven by the proximity to a ferromagnetic quantum critical point. Our data instead suggest that the superconducting pairing could be associated with a sharp spike in the electronic density of states that is also responsible for the lower pressure magnetic transition.
«
We report measurements of the pressure dependence of the low-temperature magnetization that show that the two pressure induced magnetic transitions in UGe2 are of first order. Further, the pressure dependence of the uniform susceptibility relative to the superconducting transition is not as expected if the latter is driven by the proximity to a ferromagnetic quantum critical point. Our data instead suggest that the superconducting pairing could be associated with a sharp spike in the electronic...
»