We develop an efficient sampling-free approximation scheme for moment-based distributionally robust nonlinear optimization problems. Our approach utilizes a smoothing method that allows the use of gradient-based optimization methods. We apply our scheme to finite-dimensional optimization problems and to optimal control problems with nonlinear partial differential equations. Furthermore, we apply the sample average approximation method to convex risk-neutral optimal control problems posed in Hilbert spaces and derive non-asymptotic error bounds, including exponential tail bounds, for their optimal controls and optimal values. Finally, we establish large deviations for the multilevel Monte Carlo mean estimator.
«
We develop an efficient sampling-free approximation scheme for moment-based distributionally robust nonlinear optimization problems. Our approach utilizes a smoothing method that allows the use of gradient-based optimization methods. We apply our scheme to finite-dimensional optimization problems and to optimal control problems with nonlinear partial differential equations. Furthermore, we apply the sample average approximation method to convex risk-neutral optimal control problems posed in Hilb...
»