Dynamic changes in pancreatic endocrine cell abundance, distribution, and function in antigen-induced and spontaneous autoimmune diabetes.

OBJECTIVE: Insulin deficiency in type 1 diabetes and in rodent autoimmune diabetes models is caused by beta-cell-specific killing by autoreactive T-cells. Less is known about beta-cell numbers and phenotype remaining at diabetes onset and the fate of other pancreatic endocrine cellular constituents.

RESEARCH DESIGN AND METHODS: We applied multicolor flow cytometry, confocal microscopy, and immunohistochemistry, supported by quantitative RT-PCR, to simultaneously track pancreatic endocrine cell frequencies and phenotypes during a T-cell-mediated beta-cell-destructive process using two independent autoimmune diabetes models, an inducible autoantigen-specific model and the spontaneously diabetic NOD mouse.

RESULTS: The proportion of pancreatic insulin-positive beta-cells to glucagon-positive alpha-cells was about 4:1 in nondiabetic mice. Islets isolated from newly diabetic mice exhibited the expected severe beta-cell depletion accompanied by phenotypic beta-cell changes (i.e., hypertrophy and degranulation), but they also revealed a substantial loss of alpha-cells, which was further confirmed by quantitative immunohistochemistry. While maintaining normal randomly timed serum glucagon levels, newly diabetic mice displayed an impaired glucagon secretory response to...
non-insulin-induced hypoglycemia. CONCLUSIONS: Systematically applying multicolor flow cytometry and immunohistochemistry to track declining beta-cell numbers in recently diabetic mice revealed an altered endocrine cell composition that is consistent with a prominent and unexpected islet alpha-cell loss. These alterations were observed in induced and spontaneous autoimmune diabetes models, became apparent at diabetes onset, and differed markedly within islets compared with sub-islet-sized endocrine cell clusters and among pancreatic lobes. We propose that these changes are adaptive in nature, possibly fueled by worsening glycemia and regenerative processes.

Zeitschriftentitel / Abkürzung: Diabetes

Jahr: 2009

Band: 58

Heft / Issue: 5

Seiten: 1175-84

Sprache: eng


Print-ISSN: 0012-1797

TUM Einrichtung: Kinderklinik und Poliklinik

Occurences:
- Einrichtungen > Fakultäten > Fakultät für Medizin > Kliniken und Institute > Klinik und Poliklinik für Kinderheilkunde und Jugendmedizin > 2009

entries: