The Smallest Sets of Points not Determined by Their X-rays

Abstract:
Let F be an n-point set in K_d with $K \in \{\mathbb{R}, \mathbb{Z}\}$ and $d \geq 2$. A (discrete) X-ray of F in direction s gives the number of points of F on each line parallel to s. We define $y_{K_d}(m)$ as the minimum number n for which there exist m directions s_1, \ldots, s_m (pairwise linearly independent and spanning \mathbb{R}^d) such that two n-point sets in K_d exist that have the same X-rays in these directions. The bound $y_{Z^2}(m) \leq 2m - 1$ has been observed many times in the literature. In this note we show $y_{K_d}(m) = O(md + 1 + \varepsilon)$ for $\varepsilon > 0$. For the cases $K_d = Z^d$ and $K_d = R^d$, $d > 2$, this represents the first upper bound on $y_{K_d}(m)$ that is polynomial in m. As a corollary we derive bounds on the sizes of solutions to both the classical and two-dimensional Prouhet-Tarry-Escott problem. Additionally, we establish lower bounds on y_{K_d} that enable us to prove a strengthened version of Rényi’s theorem for points in Z^2.

Zeitschriftentitel:
Bulletin of the London Mathematical Society

Jahr:
2015

Heft / Issue:
47

Seiten:
171-176

Reviewed:
ja

Sprache:
en

Verlag / Institution:
Wiley