Titel des Beitrags:
Dosimetric impact of different CT datasets for stereotactic treatment planning using 3D conformal radiotherapy or volumetric modulated arc therapy.

Abstract:
The purpose of this study was to assess the impact on dose to the planning target volume (PTV) and organs at risk (OAR) by using four differently generated CT datasets for dose calculation in stereotactic body radiotherapy (SBRT) of lung and liver tumors. Additionally, dose differences between 3D conformal radiotherapy and volumetric modulated arc therapy (VMAT) plans calculated on these CT datasets were determined. Twenty SBRT patients, ten lung cases and ten liver cases, were retrospectively selected for this study. Treatment plans were optimized on average intensity projection (AIP) CTs using 3D conformal radiotherapy (3D-CRT) and volumetric modulated arc therapy (VMAT). Afterwards, the plans were copied to the planning CTs (PCT), maximum intensity projection (MIP) and mid-ventilation (MidV) CT datasets and dose was recalculated keeping all beam parameters and monitor units unchanged. Ipsilateral lung and liver volumes and dosimetric parameters for PTV (Dmean, D2, D98, D95), ipsilateral lung and liver (Dmean, V30, V20, V10) were determined and statistically analysed using Wilcoxon test. Significant but small mean differences were found for PTV dose between the CTs (lung SBRT: <=2.5 %; liver SBRT: <=1.6 %). MIPs achieved the smallest lung and the largest liver volumes. OAR mean
doses in MIP plans were distinctly smaller than in the other CT datasets. Furthermore, overlapping of
tumors with the diaphragm results in underestimated ipsilateral lung dose in MIP plans. Best
agreement was found between AIP and MidV (lung SBRT). Overall, differences in liver SBRT were
smaller than in lung SBRT and VMAT plans achieved slightly smaller differences than 3D-CRT
plans. Only small differences were found for PTV parameters between the four CT datasets. Larger
differences occurred for the doses to organs at risk (ipsilateral lung, liver) especially for MIP plans. No
relevant differences were observed between 3D-CRT or VMAT plans. MIP CTs are not appropriate for
OAR dose assessment. PCT, AIP and MidV resulted in similar doses. If a 4DCT is acquired PCT can
be omitted using AIP or MidV for treatment planning.

Zeitschriftentitel / Abkürzung:
Radiat Oncol

Jahr: 2015

Band: 10

Heft / Issue: 1

Seiten: 249

Sprache: eng

TUM Einrichtung:
Klinik und Poliklinik für RadioOnkologie und Strahlentherapie

Occurences:
- Einrichtungen > Fakultäten > Fakultät für Medizin > Kliniken und Institute > Klinik und Poliklinik für
 RadioOnkologie und Strahlentherapie > 2015

entries: