Dokumenttyp: journal article

Autor(en) des Beitrags: von Sass, Peter Freiherr; Scheckenbach, Kathrin; Wagenmann, Martin; Klenzner, Thomas; Schipper, Joerg; Chaker, Adam

Titel des Beitrags: Taking a fresh look at the skull base in otorhinolaryngology with web-based simulation: Student's Interactive Skull-Base Trainer (SISTer).

Abstract: The increasing amount of medical knowledge and necessity for time-effective teaching and learning have given rise to emerging online, or e-learning, applications. The base of the skull is a challenging anatomic area in the otorhinolaryngology (ORL) department for both students and lecturers. Technology-enhanced learning might be an expedient approach to benefit both learners and lecturers. To investigate and create for advanced medical students a self-assessed adaptive e-learning application for the skull base within our curriculum of otolaryngology at the University Medical Center of Heinrich Heine University, Düsseldorf, Germany. Pilot approach with prospective evaluation of a newly implemented web-based e-learning simulation. The e-learning application (Student's Interactive Skull-Base Trainer) was made accessible as an elective course to a total of 269 enrolled medical students during the first 2 semesters after web launch. Spatiotemporal independent e-learning application for the skull base. Self-assessed evaluation with focus on general acceptance and personal value as well as usage data analysis. The application was well accepted by the learners. More than 80% of the participating students found the application to be a beneficial tool for enhancing their analytical and clinical problem-solving skills.
Although the general matter of the skull base seemed to be of lesser interest, the concept of anchored instructions with the use of high-end, interactive, multimedia-based content was considered to be particularly suitable for this challenging topic. Most of the students would have appreciated an extension of optional e-learning modules. With this pilot approach we were able to implement a useful and now well-accepted tool for blended learning. We showed that it is possible to raise interest even in this very specialized subspecialty of ORL with overall individual learning benefit for the students. There is a demand for more e-learning and web-based simulation to support the existing curricula in a hybrid, blended way.