Abstract:
Shared memory is a critical issue for large distributed systems. Despite several data coherency protocols have been proposed, the selection of the protocol that best suits to the application requirements and system constraints remains a challenge. The development of multi-coherency systems, where different protocols can be deployed during runtime, appears to be an interesting alternative. In order to explore the design space of the coherency protocols a fast and accurate method should be used. In this work we rely on a compilation toolchain that transparently handles data coherency decisions for a multi-protocol platform. We focus on the analytical evaluation of the coherency configuration that stands within the optimization loop. We propose to use a TLM NoC simulator to get feedback on expected network contentions. We evaluate the approach using five workloads, three data coherency protocols and two NoC topologies. As a result, we are able to obtain a fast and accurate evaluation of
the different coherency-protocol alternatives.

Dewey Dezimalklassifikation (Liste):
620 Ingenieurwissenschaften

Kongress- / Buchtitel:
10th MCSoC-16 - IEEE International Symposium on Embedded Multicore / Many-core Systems-on-Chip

Kongress / Zusatzinformationen:
Lyon, France

Datum der Konferenz:

Jahr:
2016

Quartal:
3. Quartal

Jahr / Monat:
2016-09

Monat:
Sep

Seiten:
6

Revied:
ja

Sprache:
en

WWW:
http://www.clocate.com/conference/IEEE-10th-International-Symposium-on-Embedded-Multicore-Socs-MCSoC-2016/29297/

Occurences:
- Hochschulbibliographie > 2016 > Fakultäten > Elektrotechnik und Informationstechnik > Sicherheit in der Informationstechnik (Prof. Sigl)
- Einrichtungen > Fakultäten > Fakultät für Elektrotechnik und Informationstechnik > Lehrstühle und Professuren > Sicherheit in der Informationstechnik (Prof. Sigl) > 2016

entries: