The design of algorithms for impact time control seeks to enforce the desired final time without violating the primary requirement of the guidance process, which is achieving an acceptable miss distance. Being able to control the impact time may provide survivability against close-in weapon systems that are mounted shipboard to thwart threats such as missiles and aircraft. Usually, multi-to-one engagements are preferred to saturate such defense mechanisms. A typical solution for this requirement is a preprogrammed guidance strategy, where the launch conditions are likely to need adjusting according to the desired impact conditions. However, such a possibly manual routine might not be a straightforward task to accomplish. Thus, automatic guidance schemes to satisfy the mission criteria could be preferred by the designer. In the following two paragraphs, an overview of the guidance algorithms in the literature that focus on control of impact time will be provided. Most of these methods are effective against stationary targets; those that can be used against moving targets will be indicated.