The present study investigates the flexibility and suitability of different Combined Heat and Power concepts. An integrated concept for heat decoupling with a two-stage ORC concept and turbine bleeding is introduced and compared with other state-of-the-art concepts. The flexibility of the integrated system is determined for different isentropic fluids and siloxanes. Under general circumstances siloxanes are not suitable for turbine bleeding, due to their dry expansion behaviour. However, this picture changes in this CHP context. A comparison is made for different temperature levels of heat transfer fluid. Based on OMTS as the working fluid other CHP concepts are compared with this integrated concept its benefits are then determined by calculating the produced electricity per year. Therefore the integration of the CHP concept into a virtual district heating network based on annual load duration curves is investigated and the annual electricity revenues can be calculated. Based on these electricity revenues per year higher manufacturing costs due to a higher system complexity can be compared.