Dokumenttyp: Zeitschriftenaufsatz
Autor(en) des Beitrags: Pugachev, A. O.; Gaszner, M.; Georgakis, C.; Cooper, P. G.
Titel des Beitrags: Segmentation effects on brush seal leakage and rotordynamic coefficients
Abstract:
This paper studies the effect of brush seal segmentation on the seal performance characteristics. A brush–labyrinth sealing configuration arranged of one brush seal downstream and two labyrinth fins upstream is studied experimentally and theoretically. The studied brush seal is of welded design installed with zero cold radial clearance. The brush seal front and back rings as well as the bristle pack are segmented radially in a single plane using the electrical discharge machining (EDM) technique. The segmentation procedure results in loss of bristles at the site of the cuts altering the leakage flow structure in the seal and its performance characteristics. Two test rigs are used to obtain leakage, as well as rotordynamic stiffness and damping coefficients of the seal at different pressure ratios. The computational fluid dynamics (CFD)-based model is used to predict the seal performance and to study in detail local changes in the flow field due to the segmentation. A back-to-back comparison of the performance of nonsegmented and segmented brush seals as well as baseline labyrinth seal is provided. The obtained results demonstrate that the segmentation in general negatively affects the performance of the studied brush–labyrinth sealing configuration. However, the segmented brush seal shows
increased direct damping coefficients.

Zeitschriftentitel: J. Eng. Gas Turbines Power
Jahr: 2015
Nachgewiesen in: Scopus
Reviewed: ja
Volltext / DOI: doi:10.1115/1.4031386
Verlag / Institution: ASME International
Publikationsdatum: 21.08.2015

Occurrences:
- Einrichtungen > Fakultäten > Fakultät für Maschinenwesen > Institut für Energietechnik > Lehrstuhl für Energiesysteme (Prof. Spliethoff) > Publikationen > 2015

Entries: