Lehrstühle und Professuren

Dokumenttyp: Konferenzbeitrag

Art des Konferenzbeitrags: Vortrag / Präsentation

Autor(en) des Beitrags: Yu, Meng-Day (Mandel) and Hiller, Matthias and Devadas, Srinivas

Titel des Beitrags: Maximum-Likelihood Decoding of Device-Specific Multi-Bit Symbols for Reliable Key Generation

Abstract: We present a PUF key generation scheme that uses the provably optimal method of maximum-likelihood (ML) detection on symbols derived from PUF response bits. Each device forms a noisy, device-specific symbol constellation, based on manufacturing variation. Each detected symbol is a letter in a codeword of an error correction code, resulting in non-binary codewords. We present a three-pronged validation strategy: i. mathematical (deriving an optimal symbol decoder), ii. simulation (comparing against prior approaches), and iii. empirical (using implementation data). We present simulation results demonstrating that for a given PUF noise level and block size (an estimate of helper data size), our new symbol-based ML approach can have orders of magnitude better bit error rates compared to prior schemes such as block coding, repetition coding, and threshold-based pattern matching, especially under high levels of noise due to extreme environmental variation. We demonstrate environmental reliability of a ML symbol-based soft-decision error correction approach in 28nm FPGA silicon,
covering -65°C to 105°C ambient (and including 125°C junction), and with 128-bit key regeneration error probability >-1 ppm.

Stichworte:
Physical Unclonable Function, Maximum-Likelihood, Non-Binary Codewords, Soft-Decision, Key Generation

Dewey Dezimalklassifikation (Liste):
620 Ingenieurwissenschaften

Kongress- / Buchtitel:
IEEE International Symposium on Hardware-Oriented Security and Trust (HOST)

Kongress / Zusatzinformationen:
Washington, USA

Jahr:
2015

Quartal:
2. Quartal

Jahr / Monat:
2015-05

Monat:
May

Revied:
ja

Sprache:
en

WWW:
http://www.wikicfp.com/cfp/servlet/event.showcfp?eventid=41204

Occurences:
- Einrichtungen > Fakultäten > Fakultät für Elektrotechnik und Informationstechnik > Lehrstühle und Professuren > Sicherheit in der Informationstechnik (Prof. Sigl) > 2015

entries: