Dokumenttyp: journal article
Autor(en) des Beitrags: Schirmer, Lucas; Srivastava,
 Rajneesh; Kalluri, Sudhakar Reddy;
 Böttinger, Susanne; Herwerth, Marina;
 Carassiti, Daniele; Srivastava, Barkha;
 Gempt, Jens; Schlegel, Jürgen;
 Kuhlmann, Tanja; Korn, Thomas;
 Reynolds, Richard; Hemmer,
 Bernhard
Titel des Beitrags: Differential loss of KIR4.1
 immunoreactivity in multiple sclerosis
 lesions.
Abstract: Serum antibodies against the glial
 potassium channel KIR4.1 are found
 in a subpopulation of multiple sclerosis
 (MS) patients. Little is known about
 the expression of KIR4.1 in human
 normal brain tissue and in MS
 lesions. We analyzed the expression
 pattern of KIR4.1 in normal brain
 tissue and MS lesions of the
 subcortical white matter by
 immunohistochemistry. Markers of
 related glial proteins, myelin, and
 inflammatory cells were analyzed in
 parallel. KIR4.1 is expressed in
 oligodendrocytes and astrocytes in the
 adult human brain. In
 oligodendrocytes, KIR4.1 appears as
 a homotetramer channel, in astrocytes
 as homo- and heterotetramer
 channels together with KIR5.1. In
 acute MS lesions, KIR4.1
 immunoreactivity (IR) was differentially
 lost on periplaque oligodendrocytes
 and perivascular astrocytes. In part of
 acute lesions, complement activation,
 apoptotic KIR4.1(+) glial cells, and
 phagocytes containing KIR4.1(+) fragments
 accompanied loss of glial
 KIR4.1 IR. Periplaque reactive
 astrocytes showed enhanced IR for
 both KIR4.1 and KIR5.1. In chronic
 active MS lesions, apart from a
 general loss of oligodendrocytes in the
 demyelinated area, we observed a
 decrease of astroglial KIR4.1 but not
glial fibrillary acidic protein IR. In chronic inactive and remyelinating MS lesions, KIR4.1 IR was restored on astrocytes and found in a subset of presumably new myelinating oligodendrocytes. The expression profile of KIR4.1 in glial cells and stage-dependent alterations of KIR4.1 IR in MS lesions are compatible with an immune response against KIR4.1 at least in a subset of MS patients.